114 lines
2.8 KiB
YAML
114 lines
2.8 KiB
YAML
|
model:
|
||
|
base_learning_rate: 1.5e-06
|
||
|
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
||
|
params:
|
||
|
linear_start: 0.00085
|
||
|
linear_end: 0.0120
|
||
|
num_timesteps_cond: 1
|
||
|
log_every_t: 200
|
||
|
timesteps: 1000
|
||
|
first_stage_key: image
|
||
|
cond_stage_key: caption
|
||
|
image_size: 64
|
||
|
channels: 4
|
||
|
cond_stage_trainable: false # Note: different from the one we trained before
|
||
|
conditioning_key: crossattn
|
||
|
monitor: val/loss_simple_ema
|
||
|
scale_factor: 0.18215
|
||
|
|
||
|
scheduler_config: # 10000 warmup steps
|
||
|
target: ldm.lr_scheduler.LambdaLinearScheduler
|
||
|
params:
|
||
|
warm_up_steps: [ 1 ] # NOTE for resuming. use 10000 if starting from scratch
|
||
|
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
||
|
f_start: [ 1.e-6 ]
|
||
|
f_max: [ 1. ]
|
||
|
f_min: [ 1. ]
|
||
|
|
||
|
unet_config:
|
||
|
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||
|
params:
|
||
|
image_size: 32 # unused
|
||
|
in_channels: 4
|
||
|
out_channels: 4
|
||
|
model_channels: 320
|
||
|
attention_resolutions: [ 4, 2, 1 ]
|
||
|
num_res_blocks: 2
|
||
|
channel_mult: [ 1, 2, 4, 4 ]
|
||
|
num_heads: 8
|
||
|
use_spatial_transformer: True
|
||
|
transformer_depth: 1
|
||
|
context_dim: 768
|
||
|
use_checkpoint: True
|
||
|
legacy: False
|
||
|
|
||
|
first_stage_config:
|
||
|
target: ldm.models.autoencoder.AutoencoderKL
|
||
|
params:
|
||
|
embed_dim: 4
|
||
|
monitor: val/rec_loss
|
||
|
ddconfig:
|
||
|
double_z: true
|
||
|
z_channels: 4
|
||
|
resolution: 512
|
||
|
in_channels: 3
|
||
|
out_ch: 3
|
||
|
ch: 128
|
||
|
ch_mult:
|
||
|
- 1
|
||
|
- 2
|
||
|
- 4
|
||
|
- 4
|
||
|
num_res_blocks: 2
|
||
|
attn_resolutions: []
|
||
|
dropout: 0.0
|
||
|
lossconfig:
|
||
|
target: torch.nn.Identity
|
||
|
|
||
|
cond_stage_config:
|
||
|
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
||
|
|
||
|
data:
|
||
|
target: main.DataModuleFromConfig
|
||
|
params:
|
||
|
batch_size: 4
|
||
|
num_workers: 4
|
||
|
wrap: false
|
||
|
train:
|
||
|
target: ldm.data.local.LocalBase
|
||
|
params:
|
||
|
size: 512
|
||
|
mode: "train"
|
||
|
validation:
|
||
|
target: ldm.data.local.LocalBase
|
||
|
params:
|
||
|
size: 512
|
||
|
mode: "val"
|
||
|
val_split: 64
|
||
|
|
||
|
lightning:
|
||
|
modelcheckpoint:
|
||
|
params:
|
||
|
every_n_train_steps: 500
|
||
|
callbacks:
|
||
|
image_logger:
|
||
|
target: main.ImageLogger
|
||
|
params:
|
||
|
batch_frequency: 500
|
||
|
max_images: 4
|
||
|
increase_log_steps: False
|
||
|
log_first_step: False
|
||
|
log_images_kwargs:
|
||
|
use_ema_scope: False
|
||
|
inpaint: False
|
||
|
plot_progressive_rows: False
|
||
|
plot_diffusion_rows: False
|
||
|
N: 4
|
||
|
ddim_steps: 50
|
||
|
|
||
|
trainer:
|
||
|
benchmark: True
|
||
|
val_check_interval: 5000000
|
||
|
num_sanity_val_steps: 0
|
||
|
accumulate_grad_batches: 1
|