Implement Text Encoder Training
This commit is contained in:
parent
c709257bec
commit
18ff256be5
|
@ -92,6 +92,8 @@ parser.add_argument('--extended_validation', type=bool_t, default='False', help=
|
|||
parser.add_argument('--no_migration', type=bool_t, default='False', help='Do not perform migration of dataset while the `--resize` flag is active. Migration creates an adjacent folder to the dataset with <dataset_dirname>_cropped.')
|
||||
parser.add_argument('--skip_validation', type=bool_t, default='False', help='Skip validation of images, useful for speeding up loading of very large datasets that have already been validated.')
|
||||
parser.add_argument('--extended_mode_chunks', type=int, default=0, help='Enables extended mode for tokenization with given amount of maximum chunks. Values < 2 disable.')
|
||||
parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder")
|
||||
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
|
@ -731,11 +733,15 @@ def main():
|
|||
|
||||
# Freeze vae and text_encoder
|
||||
vae.requires_grad_(False)
|
||||
text_encoder.requires_grad_(False)
|
||||
if not args.train_text_encoder:
|
||||
text_encoder.requires_grad_(False)
|
||||
|
||||
if args.gradient_checkpointing:
|
||||
unet.enable_gradient_checkpointing()
|
||||
|
||||
if args.train_text_encoder:
|
||||
text_encoder.gradient_checkpointing_enable()
|
||||
|
||||
if args.use_xformers:
|
||||
unet.set_use_memory_efficient_attention_xformers(True)
|
||||
|
||||
|
@ -754,6 +760,14 @@ def main():
|
|||
gradient_as_bucket_view=True
|
||||
)
|
||||
|
||||
if args.train_text_encoder:
|
||||
text_encoder = torch.nn.parallel.DistributedDataParallel(
|
||||
text_encoder,
|
||||
device_ids=[rank],
|
||||
output_device=rank,
|
||||
gradient_as_bucket_view=True
|
||||
)
|
||||
|
||||
if args.use_8bit_adam: # Bits and bytes is only supported on certain CUDA setups, so default to regular adam if it fails.
|
||||
try:
|
||||
import bitsandbytes as bnb
|
||||
|
@ -774,10 +788,12 @@ def main():
|
|||
)
|
||||
"""
|
||||
|
||||
optimizer_parameters = unet.parameters() if not args.train_text_encoder else itertools.chain(unet.parameters(), text_encoder.parameters())
|
||||
|
||||
# Create distributed optimizer
|
||||
from torch.distributed.optim import ZeroRedundancyOptimizer
|
||||
optimizer = ZeroRedundancyOptimizer(
|
||||
unet.parameters(),
|
||||
optimizer_parameters,
|
||||
optimizer_class=optimizer_cls,
|
||||
parameters_as_bucket_view=True,
|
||||
lr=args.lr,
|
||||
|
@ -866,6 +882,8 @@ def main():
|
|||
loss = torch.tensor(0.0, device=device, dtype=weight_dtype)
|
||||
for epoch in range(args.epochs):
|
||||
unet.train()
|
||||
if args.train_text_encoder:
|
||||
text_encoder.train()
|
||||
for _, batch in enumerate(train_dataloader):
|
||||
if args.resume and global_step < target_global_step:
|
||||
if rank == 0:
|
||||
|
@ -898,20 +916,37 @@ def main():
|
|||
else:
|
||||
raise ValueError(f"Unknown prediction type: {noise_scheduler.config.prediction_type}")
|
||||
|
||||
with unet.join():
|
||||
# Predict the noise residual and compute loss
|
||||
with torch.autocast('cuda', enabled=args.fp16):
|
||||
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
||||
if not args.train_text_encoder:
|
||||
with unet.join():
|
||||
# Predict the noise residual and compute loss
|
||||
with torch.autocast('cuda', enabled=args.fp16):
|
||||
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
||||
|
||||
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="mean")
|
||||
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="mean")
|
||||
|
||||
# backprop and update
|
||||
scaler.scale(loss).backward()
|
||||
torch.nn.utils.clip_grad_norm_(unet.parameters(), 1.0)
|
||||
scaler.step(optimizer)
|
||||
scaler.update()
|
||||
lr_scheduler.step()
|
||||
optimizer.zero_grad()
|
||||
# backprop and update
|
||||
scaler.scale(loss).backward()
|
||||
torch.nn.utils.clip_grad_norm_(unet.parameters(), 1.0)
|
||||
scaler.step(optimizer)
|
||||
scaler.update()
|
||||
lr_scheduler.step()
|
||||
optimizer.zero_grad()
|
||||
else:
|
||||
with unet.join(), text_encoder.join():
|
||||
# Predict the noise residual and compute loss
|
||||
with torch.autocast('cuda', enabled=args.fp16):
|
||||
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
||||
|
||||
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="mean")
|
||||
|
||||
# backprop and update
|
||||
scaler.scale(loss).backward()
|
||||
torch.nn.utils.clip_grad_norm_(unet.parameters(), 1.0)
|
||||
torch.nn.utils.clip_grad_norm_(text_encoder.parameters(), 1.0)
|
||||
scaler.step(optimizer)
|
||||
scaler.update()
|
||||
lr_scheduler.step()
|
||||
optimizer.zero_grad()
|
||||
|
||||
# Update EMA
|
||||
if args.use_ema:
|
||||
|
|
Loading…
Reference in New Issue