commit
3020278dd9
|
@ -0,0 +1,4 @@
|
|||
./venv
|
||||
./danbooru-aesthetic
|
||||
./logs
|
||||
*.ckpt
|
|
@ -40,6 +40,7 @@ lib64/
|
|||
parts/
|
||||
sdist/
|
||||
var/
|
||||
venv/
|
||||
wheels/
|
||||
share/python-wheels/
|
||||
*.egg-info/
|
||||
|
@ -54,4 +55,4 @@ MANIFEST
|
|||
/src/
|
||||
|
||||
#Obsidian
|
||||
.obsidian/
|
||||
.obsidian/
|
||||
|
|
|
@ -0,0 +1,10 @@
|
|||
FROM pytorch/pytorch:latest
|
||||
|
||||
RUN apt update && \
|
||||
apt install -y git curl unzip vim && \
|
||||
pip install git+https://github.com/derfred/lightning.git@waifu-1.6.0#egg=pytorch-lightning
|
||||
RUN mkdir /waifu
|
||||
COPY . /waifu/
|
||||
WORKDIR /waifu
|
||||
RUN grep -v pytorch-lightning requirements.txt > requirements-waifu.txt && \
|
||||
pip install -r requirements-waifu.txt
|
|
@ -3,6 +3,6 @@ Training is available with waifu-diffusion. Before starting, we remind you that,
|
|||
## Contents
|
||||
1. [Dataset](./dataset.md)
|
||||
2. [Configuration](./configuration.md)
|
||||
3. Executing
|
||||
3. [Executing](./executing.md)
|
||||
4. Recommendations
|
||||
5. FAQ
|
||||
5. FAQ
|
||||
|
|
|
@ -82,11 +82,11 @@ We are also going to download the only the first JSON batch. If you want to trai
|
|||
|
||||
Download the 512px folders from 0000 to 0009 (3.86GB):
|
||||
```bash
|
||||
rsync rsync://176.9.41.242:873/danbooru2021/512px/000* ./512px/
|
||||
rsync -r rsync://176.9.41.242:873/danbooru2021/512px/000* ./512px/
|
||||
```
|
||||
Download the first batch of metadata, posts000000000000.json (800MB):
|
||||
``` shell
|
||||
rsync -r rsync://176.9.41.242:873/danbooru2021/metadata/posts000000000000.json ./metadata/
|
||||
rsync rsync://176.9.41.242:873/danbooru2021/metadata/posts000000000000.json ./metadata/
|
||||
```
|
||||
You should now have two folders named: 512px and metadata.
|
||||
|
||||
|
@ -106,8 +106,8 @@ Once the script has finished, you should have a "danbooru-aesthetic" folder, who
|
|||
Next we need to put the extracted data into the format required in the section "Dataset requirements". Run the following commands:
|
||||
``` shell
|
||||
mkdir danbooru-aesthetic/img danbooru-aesthetic/txt
|
||||
mv danbooru-aesthetic/*.jpg labeled_data/img
|
||||
mv danbooru-aesthetic/*.txt labeled_data/txt
|
||||
mv danbooru-aesthetic/*.jpg danbooru-aesthetic/img
|
||||
mv danbooru-aesthetic/*.txt danbooru-aesthetic/txt
|
||||
```
|
||||
|
||||
In order to reduce size, zip the contents of labeled_data:
|
||||
|
|
|
@ -0,0 +1,51 @@
|
|||
# 3. Executing
|
||||
|
||||
There are two modes of executing the training:
|
||||
1. Using docker image. This is the fastest way to get started.
|
||||
2. Using system python install. Allows more customization.
|
||||
|
||||
Note: You will need to provide the initial checkpoint for resuming the training. This must be a version with the full EMA. Otherwise you will get this error:
|
||||
```
|
||||
RuntimeError: Error(s) in loading state_dict for LatentDiffusion:
|
||||
Missing key(s) in state_dict: "model_ema.diffusion_modeltime_embed0weight", "model_ema.diffusion_modeltime_embed0bias".... (Many lines of similar outputs)
|
||||
```
|
||||
|
||||
## 1. Using docker image
|
||||
|
||||
An image is provided at `ghcr.io/derfred/waifu-diffusion`. Execute it using by adjusting the NUM_GPU variable:
|
||||
```
|
||||
docker run -it -e NUM_GPU=x ghcr.io/derfred/waifu-diffusion
|
||||
```
|
||||
|
||||
Next you will want to download the starting checkpoint into the file `model.ckpt` and copy the training data in the directory `/waifu/danbooru-aesthetic`.
|
||||
|
||||
Finally execute the training using:
|
||||
```
|
||||
sh train.sh -t -n "aesthetic" --resume_from_checkpoint model.ckpt --base ./configs/stable-diffusion/v1-finetune-4gpu.yaml --no-test --seed 25 --scale_lr False --data_root "./danbooru-aesthetic"
|
||||
```
|
||||
|
||||
## 2. system python install
|
||||
|
||||
First install the dependencies:
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
Next you will want to download the starting checkpoint into the file `model.ckpt` and copy the training data in the directory `/waifu/danbooru-aesthetic`.
|
||||
|
||||
Also you will need to edit the configuration in `./configs/stable-diffusion/v1-finetune-4gpu.yaml`. In the `data` section (around line 70) change the `batch_size` and `num_workers` to the number of GPUs you are using:
|
||||
```
|
||||
data:
|
||||
target: main.DataModuleFromConfig
|
||||
params:
|
||||
batch_size: 4
|
||||
num_workers: 4
|
||||
wrap: false
|
||||
```
|
||||
|
||||
Finally execute the training using the following command. You need to adjust the `--gpu` parameter according to your GPU settings.
|
||||
```bash
|
||||
sh train.sh -t -n "aesthetic" --resume_from_checkpoint model.ckpt --base ./configs/stable-diffusion/v1-finetune-4gpu.yaml --no-test --seed 25 --scale_lr False --data_root "./danbooru-aesthetic" --gpu=0,1,2,3,
|
||||
```
|
||||
|
||||
In case you get an error stating `KeyError: 'Trying to restore optimizer state but checkpoint contains only the model. This is probably due to ModelCheckpoint.save_weights_only being set to True.'` follow these instructions: https://discord.com/channels/930499730843250783/953132470528798811/1018668937052962908
|
|
@ -1,10 +1,10 @@
|
|||
numpy==1.19.2
|
||||
numpy==1.21.6
|
||||
albumentations==0.4.3
|
||||
opencv-python==4.1.2.30
|
||||
opencv-python
|
||||
pudb==2019.2
|
||||
imageio==2.9.0
|
||||
imageio-ffmpeg==0.4.2
|
||||
pytorch-lightning==1.4.2
|
||||
pytorch-lightning==1.6.0
|
||||
omegaconf==2.1.1
|
||||
test-tube>=0.7.5
|
||||
streamlit>=0.73.1
|
||||
|
@ -14,6 +14,6 @@ transformers==4.19.2
|
|||
torchmetrics==0.6.0
|
||||
kornia==0.6
|
||||
gradio
|
||||
git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
|
||||
git+https://github.com/illeatmyhat/taming-transformers.git@master#egg=taming-transformers
|
||||
git+https://github.com/openai/CLIP.git@main#egg=clip
|
||||
git+https://github.com/hlky/k-diffusion-sd#egg=k_diffusion
|
||||
|
|
16
train.sh
16
train.sh
|
@ -1 +1,15 @@
|
|||
python3 main.py --resume model.ckpt --base ./configs/stable-diffusion/v1-finetune-4gpu.yaml --no-test --seed 25 --scale_lr False --gpus 0,1,2,3
|
||||
#!/bin/bash
|
||||
|
||||
ARGS=""
|
||||
if [ ! -z "$NUM_GPU" ]; then
|
||||
ARGS="--gpu="
|
||||
for i in $(seq 0 $((NUM_GPU-1)))
|
||||
do
|
||||
ARGS="$ARGS$i,"
|
||||
done
|
||||
|
||||
sed -i "s/batch_size: 4/batch_size: $NUM_GPU/g" ./configs/stable-diffusion/v1-finetune-4gpu.yaml
|
||||
sed -i "s/num_workers: 4/num_workers: $NUM_GPU/g" ./configs/stable-diffusion/v1-finetune-4gpu.yaml
|
||||
fi
|
||||
|
||||
python3 main.py $ARGS "$@"
|
||||
|
|
Loading…
Reference in New Issue