Merge pull request #17 from derfred/installfixes

docs for executing
This commit is contained in:
harubaru 2022-09-17 08:11:30 -07:00 committed by GitHub
commit 3020278dd9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 92 additions and 12 deletions

4
.dockerignore Normal file
View File

@ -0,0 +1,4 @@
./venv
./danbooru-aesthetic
./logs
*.ckpt

1
.gitignore vendored
View File

@ -40,6 +40,7 @@ lib64/
parts/
sdist/
var/
venv/
wheels/
share/python-wheels/
*.egg-info/

10
Dockerfile Normal file
View File

@ -0,0 +1,10 @@
FROM pytorch/pytorch:latest
RUN apt update && \
apt install -y git curl unzip vim && \
pip install git+https://github.com/derfred/lightning.git@waifu-1.6.0#egg=pytorch-lightning
RUN mkdir /waifu
COPY . /waifu/
WORKDIR /waifu
RUN grep -v pytorch-lightning requirements.txt > requirements-waifu.txt && \
pip install -r requirements-waifu.txt

View File

@ -3,6 +3,6 @@ Training is available with waifu-diffusion. Before starting, we remind you that,
## Contents
1. [Dataset](./dataset.md)
2. [Configuration](./configuration.md)
3. Executing
3. [Executing](./executing.md)
4. Recommendations
5. FAQ

View File

@ -82,11 +82,11 @@ We are also going to download the only the first JSON batch. If you want to trai
Download the 512px folders from 0000 to 0009 (3.86GB):
```bash
rsync rsync://176.9.41.242:873/danbooru2021/512px/000* ./512px/
rsync -r rsync://176.9.41.242:873/danbooru2021/512px/000* ./512px/
```
Download the first batch of metadata, posts000000000000.json (800MB):
``` shell
rsync -r rsync://176.9.41.242:873/danbooru2021/metadata/posts000000000000.json ./metadata/
rsync rsync://176.9.41.242:873/danbooru2021/metadata/posts000000000000.json ./metadata/
```
You should now have two folders named: 512px and metadata.
@ -106,8 +106,8 @@ Once the script has finished, you should have a "danbooru-aesthetic" folder, who
Next we need to put the extracted data into the format required in the section "Dataset requirements". Run the following commands:
``` shell
mkdir danbooru-aesthetic/img danbooru-aesthetic/txt
mv danbooru-aesthetic/*.jpg labeled_data/img
mv danbooru-aesthetic/*.txt labeled_data/txt
mv danbooru-aesthetic/*.jpg danbooru-aesthetic/img
mv danbooru-aesthetic/*.txt danbooru-aesthetic/txt
```
In order to reduce size, zip the contents of labeled_data:

View File

@ -0,0 +1,51 @@
# 3. Executing
There are two modes of executing the training:
1. Using docker image. This is the fastest way to get started.
2. Using system python install. Allows more customization.
Note: You will need to provide the initial checkpoint for resuming the training. This must be a version with the full EMA. Otherwise you will get this error:
```
RuntimeError: Error(s) in loading state_dict for LatentDiffusion:
Missing key(s) in state_dict: "model_ema.diffusion_modeltime_embed0weight", "model_ema.diffusion_modeltime_embed0bias".... (Many lines of similar outputs)
```
## 1. Using docker image
An image is provided at `ghcr.io/derfred/waifu-diffusion`. Execute it using by adjusting the NUM_GPU variable:
```
docker run -it -e NUM_GPU=x ghcr.io/derfred/waifu-diffusion
```
Next you will want to download the starting checkpoint into the file `model.ckpt` and copy the training data in the directory `/waifu/danbooru-aesthetic`.
Finally execute the training using:
```
sh train.sh -t -n "aesthetic" --resume_from_checkpoint model.ckpt --base ./configs/stable-diffusion/v1-finetune-4gpu.yaml --no-test --seed 25 --scale_lr False --data_root "./danbooru-aesthetic"
```
## 2. system python install
First install the dependencies:
```bash
pip install -r requirements.txt
```
Next you will want to download the starting checkpoint into the file `model.ckpt` and copy the training data in the directory `/waifu/danbooru-aesthetic`.
Also you will need to edit the configuration in `./configs/stable-diffusion/v1-finetune-4gpu.yaml`. In the `data` section (around line 70) change the `batch_size` and `num_workers` to the number of GPUs you are using:
```
data:
target: main.DataModuleFromConfig
params:
batch_size: 4
num_workers: 4
wrap: false
```
Finally execute the training using the following command. You need to adjust the `--gpu` parameter according to your GPU settings.
```bash
sh train.sh -t -n "aesthetic" --resume_from_checkpoint model.ckpt --base ./configs/stable-diffusion/v1-finetune-4gpu.yaml --no-test --seed 25 --scale_lr False --data_root "./danbooru-aesthetic" --gpu=0,1,2,3,
```
In case you get an error stating `KeyError: 'Trying to restore optimizer state but checkpoint contains only the model. This is probably due to ModelCheckpoint.save_weights_only being set to True.'` follow these instructions: https://discord.com/channels/930499730843250783/953132470528798811/1018668937052962908

View File

@ -1,10 +1,10 @@
numpy==1.19.2
numpy==1.21.6
albumentations==0.4.3
opencv-python==4.1.2.30
opencv-python
pudb==2019.2
imageio==2.9.0
imageio-ffmpeg==0.4.2
pytorch-lightning==1.4.2
pytorch-lightning==1.6.0
omegaconf==2.1.1
test-tube>=0.7.5
streamlit>=0.73.1
@ -14,6 +14,6 @@ transformers==4.19.2
torchmetrics==0.6.0
kornia==0.6
gradio
git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
git+https://github.com/illeatmyhat/taming-transformers.git@master#egg=taming-transformers
git+https://github.com/openai/CLIP.git@main#egg=clip
git+https://github.com/hlky/k-diffusion-sd#egg=k_diffusion

View File

@ -1 +1,15 @@
python3 main.py --resume model.ckpt --base ./configs/stable-diffusion/v1-finetune-4gpu.yaml --no-test --seed 25 --scale_lr False --gpus 0,1,2,3
#!/bin/bash
ARGS=""
if [ ! -z "$NUM_GPU" ]; then
ARGS="--gpu="
for i in $(seq 0 $((NUM_GPU-1)))
do
ARGS="$ARGS$i,"
done
sed -i "s/batch_size: 4/batch_size: $NUM_GPU/g" ./configs/stable-diffusion/v1-finetune-4gpu.yaml
sed -i "s/num_workers: 4/num_workers: $NUM_GPU/g" ./configs/stable-diffusion/v1-finetune-4gpu.yaml
fi
python3 main.py $ARGS "$@"