diff --git a/configs/stable-diffusion/v1-finetune-8gpu.yaml b/configs/stable-diffusion/v1-finetune-8gpu.yaml new file mode 100644 index 0000000..1d135c0 --- /dev/null +++ b/configs/stable-diffusion/v1-finetune-8gpu.yaml @@ -0,0 +1,113 @@ +model: + base_learning_rate: 1.5e-06 + target: ldm.models.diffusion.ddpm.LatentDiffusion + params: + linear_start: 0.00085 + linear_end: 0.0120 + num_timesteps_cond: 1 + log_every_t: 200 + timesteps: 1000 + first_stage_key: image + cond_stage_key: caption + image_size: 64 + channels: 4 + cond_stage_trainable: false # Note: different from the one we trained before + conditioning_key: crossattn + monitor: val/loss_simple_ema + scale_factor: 0.18215 + + scheduler_config: # 10000 warmup steps + target: ldm.lr_scheduler.LambdaLinearScheduler + params: + warm_up_steps: [ 1 ] # NOTE for resuming. use 10000 if starting from scratch + cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases + f_start: [ 1.e-6 ] + f_max: [ 1. ] + f_min: [ 1. ] + + unet_config: + target: ldm.modules.diffusionmodules.openaimodel.UNetModel + params: + image_size: 32 # unused + in_channels: 4 + out_channels: 4 + model_channels: 320 + attention_resolutions: [ 4, 2, 1 ] + num_res_blocks: 2 + channel_mult: [ 1, 2, 4, 4 ] + num_heads: 8 + use_spatial_transformer: True + transformer_depth: 1 + context_dim: 768 + use_checkpoint: True + legacy: False + + first_stage_config: + target: ldm.models.autoencoder.AutoencoderKL + params: + embed_dim: 4 + monitor: val/rec_loss + ddconfig: + double_z: true + z_channels: 4 + resolution: 512 + in_channels: 3 + out_ch: 3 + ch: 128 + ch_mult: + - 1 + - 2 + - 4 + - 4 + num_res_blocks: 2 + attn_resolutions: [] + dropout: 0.0 + lossconfig: + target: torch.nn.Identity + + cond_stage_config: + target: ldm.modules.encoders.modules.FrozenCLIPEmbedder + +data: + target: main.DataModuleFromConfig + params: + batch_size: 4 + num_workers: 4 + wrap: false + train: + target: ldm.data.local.LocalBase + params: + size: 512 + mode: "train" + validation: + target: ldm.data.local.LocalBase + params: + size: 512 + mode: "val" + val_split: 64 + +lightning: + modelcheckpoint: + params: + every_n_train_steps: 500 + callbacks: + image_logger: + target: main.ImageLogger + params: + batch_frequency: 500 + max_images: 4 + increase_log_steps: False + log_first_step: False + log_images_kwargs: + use_ema_scope: False + inpaint: False + plot_progressive_rows: False + plot_diffusion_rows: False + N: 4 + ddim_steps: 50 + +trainer: + benchmark: True + val_check_interval: 5000000 + num_sanity_val_steps: 0 + accumulate_grad_batches: 1