commit
5b793feb52
|
@ -19,6 +19,8 @@ import gc
|
|||
import time
|
||||
import itertools
|
||||
import numpy as np
|
||||
import json
|
||||
import re
|
||||
|
||||
try:
|
||||
pynvml.nvmlInit()
|
||||
|
@ -43,6 +45,7 @@ parser = argparse.ArgumentParser(description='Stable Diffusion Finetuner')
|
|||
parser.add_argument('--model', type=str, default=None, required=True, help='The name of the model to use for finetuning. Could be HuggingFace ID or a directory')
|
||||
parser.add_argument('--run_name', type=str, default=None, required=True, help='Name of the finetune run.')
|
||||
parser.add_argument('--dataset', type=str, default=None, required=True, help='The path to the dataset to use for finetuning.')
|
||||
parser.add_argument('--num_buckets', type=int, default=16, help='The number of buckets.')
|
||||
parser.add_argument('--bucket_side_min', type=int, default=256, help='The minimum side length of a bucket.')
|
||||
parser.add_argument('--bucket_side_max', type=int, default=768, help='The maximum side length of a bucket.')
|
||||
parser.add_argument('--lr', type=float, default=5e-6, help='Learning rate')
|
||||
|
@ -67,6 +70,7 @@ parser.add_argument('--fp16', dest='fp16', type=bool, default=False, help='Train
|
|||
parser.add_argument('--image_log_steps', type=int, default=100, help='Number of steps to log images at.')
|
||||
parser.add_argument('--image_log_amount', type=int, default=4, help='Number of images to log every image_log_steps')
|
||||
parser.add_argument('--clip_penultimate', type=bool, default=False, help='Use penultimate CLIP layer for text embedding')
|
||||
parser.add_argument('--output_bucket_info', type=bool, default=False, help='Outputs bucket information and exits')
|
||||
args = parser.parse_args()
|
||||
|
||||
def setup():
|
||||
|
@ -143,10 +147,19 @@ class ImageStore:
|
|||
|
||||
self.image_files = []
|
||||
[self.image_files.extend(glob.glob(f'{data_dir}' + '/*.' + e)) for e in ['jpg', 'jpeg', 'png', 'bmp', 'webp']]
|
||||
self.image_files = [x for x in self.image_files if self.__valid_file(x)]
|
||||
|
||||
def __len__(self) -> int:
|
||||
return len(self.image_files)
|
||||
|
||||
def __valid_file(self, f) -> bool:
|
||||
try:
|
||||
Image.open(f)
|
||||
return True
|
||||
except:
|
||||
print(f'WARNING: Unable to open file: {f}')
|
||||
return False
|
||||
|
||||
# iterator returns images as PIL images and their index in the store
|
||||
def entries_iterator(self) -> Generator[Tuple[Image.Image, int], None, None]:
|
||||
for f in range(len(self)):
|
||||
|
@ -158,7 +171,7 @@ class ImageStore:
|
|||
|
||||
# gets caption by removing the extension from the filename and replacing it with .txt
|
||||
def get_caption(self, index: int) -> str:
|
||||
filename = self.image_files[index].split('.')[0] + '.txt'
|
||||
filename = re.sub('\.[^/.]+$', '', self.image_files[index]) + '.txt'
|
||||
with open(filename, 'r') as f:
|
||||
return f.read()
|
||||
|
||||
|
@ -254,6 +267,9 @@ class AspectBucket:
|
|||
def get_batch_count(self):
|
||||
return sum(len(b) // self.batch_size for b in self.bucket_data.values())
|
||||
|
||||
def get_bucket_info(self):
|
||||
return json.dumps({ "buckets": self.buckets, "bucket_ratios": self._bucket_ratios })
|
||||
|
||||
def get_batch_iterator(self) -> Generator[Tuple[Tuple[int, int], List[int]], None, None]:
|
||||
"""
|
||||
Generator that provides batches where the images in a batch fall on the same bucket
|
||||
|
@ -526,11 +542,15 @@ def main():
|
|||
|
||||
store = ImageStore(args.dataset)
|
||||
dataset = AspectDataset(store, tokenizer)
|
||||
bucket = AspectBucket(store, 16, args.batch_size, args.bucket_side_min, args.bucket_side_max, 64, args.resolution * args.resolution, 2.0)
|
||||
bucket = AspectBucket(store, args.num_buckets, args.batch_size, args.bucket_side_min, args.bucket_side_max, 64, args.resolution * args.resolution, 2.0)
|
||||
sampler = AspectBucketSampler(bucket=bucket, num_replicas=world_size, rank=rank)
|
||||
|
||||
print(f'STORE_LEN: {len(store)}')
|
||||
|
||||
if args.output_bucket_info:
|
||||
print(bucket.get_bucket_info())
|
||||
exit(0)
|
||||
|
||||
train_dataloader = torch.utils.data.DataLoader(
|
||||
dataset,
|
||||
batch_sampler=sampler,
|
||||
|
|
Loading…
Reference in New Issue