diff --git a/diffusers_trainer.py b/diffusers_trainer.py index 2233aaa..8d20303 100644 --- a/diffusers_trainer.py +++ b/diffusers_trainer.py @@ -23,6 +23,8 @@ import gc import time import itertools import numpy as np +import json +import re try: pynvml.nvmlInit() @@ -47,6 +49,7 @@ parser = argparse.ArgumentParser(description='Stable Diffusion Finetuner') parser.add_argument('--model', type=str, default=None, required=True, help='The name of the model to use for finetuning. Could be HuggingFace ID or a directory') parser.add_argument('--run_name', type=str, default=None, required=True, help='Name of the finetune run.') parser.add_argument('--dataset', type=str, default=None, required=True, help='The path to the dataset to use for finetuning.') +parser.add_argument('--num_buckets', type=int, default=16, help='The number of buckets.') parser.add_argument('--bucket_side_min', type=int, default=256, help='The minimum side length of a bucket.') parser.add_argument('--bucket_side_max', type=int, default=768, help='The maximum side length of a bucket.') parser.add_argument('--lr', type=float, default=5e-6, help='Learning rate') @@ -71,6 +74,7 @@ parser.add_argument('--fp16', dest='fp16', type=bool, default=False, help='Train parser.add_argument('--image_log_steps', type=int, default=100, help='Number of steps to log images at.') parser.add_argument('--image_log_amount', type=int, default=4, help='Number of images to log every image_log_steps') parser.add_argument('--clip_penultimate', type=bool, default=False, help='Use penultimate CLIP layer for text embedding') +parser.add_argument('--output_bucket_info', type=bool, default=False, help='Outputs bucket information and exits') args = parser.parse_args() def setup(): @@ -147,10 +151,19 @@ class ImageStore: self.image_files = [] [self.image_files.extend(glob.glob(f'{data_dir}' + '/*.' + e)) for e in ['jpg', 'jpeg', 'png', 'bmp', 'webp']] + self.image_files = [x for x in self.image_files if self.__valid_file(x)] def __len__(self) -> int: return len(self.image_files) + def __valid_file(self, f) -> bool: + try: + Image.open(f) + return True + except: + print(f'WARNING: Unable to open file: {f}') + return False + # iterator returns images as PIL images and their index in the store def entries_iterator(self) -> Generator[Tuple[Image.Image, int], None, None]: for f in range(len(self)): @@ -162,7 +175,7 @@ class ImageStore: # gets caption by removing the extension from the filename and replacing it with .txt def get_caption(self, index: int) -> str: - filename = self.image_files[index].split('.')[0] + '.txt' + filename = re.sub('\.[^/.]+$', '', self.image_files[index]) + '.txt' with open(filename, 'r') as f: return f.read() @@ -258,6 +271,9 @@ class AspectBucket: def get_batch_count(self): return sum(len(b) // self.batch_size for b in self.bucket_data.values()) + def get_bucket_info(self): + return json.dumps({ "buckets": self.buckets, "bucket_ratios": self._bucket_ratios }) + def get_batch_iterator(self) -> Generator[Tuple[Tuple[int, int], List[int]], None, None]: """ Generator that provides batches where the images in a batch fall on the same bucket @@ -529,11 +545,15 @@ def main(): store = ImageStore(args.dataset) dataset = AspectDataset(store, tokenizer) - bucket = AspectBucket(store, 16, args.batch_size, args.bucket_side_min, args.bucket_side_max, 64, args.resolution * args.resolution, 2.0) + bucket = AspectBucket(store, args.num_buckets, args.batch_size, args.bucket_side_min, args.bucket_side_max, 64, args.resolution * args.resolution, 2.0) sampler = AspectBucketSampler(bucket=bucket, num_replicas=world_size, rank=rank) print(f'STORE_LEN: {len(store)}') + if args.output_bucket_info: + print(bucket.get_bucket_info()) + exit(0) + train_dataloader = torch.utils.data.DataLoader( dataset, batch_sampler=sampler,