Add alternate dataloader

This commit is contained in:
harubaru 2022-09-22 14:56:27 -07:00
parent 2e69358d50
commit c5f2775beb
3 changed files with 418 additions and 1 deletions

View File

@ -0,0 +1,115 @@
model:
base_learning_rate: 1.5e-06
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: image
cond_stage_key: caption
image_size: 64
channels: 4
cond_stage_trainable: false # Note: different from the one we trained before
conditioning_key: crossattn
monitor: val/loss_simple_ema
scale_factor: 0.18215
scheduler_config: # 10000 warmup steps
target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [ 1 ] # NOTE for resuming. use 10000 if starting from scratch
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
f_start: [ 1.e-6 ]
f_max: [ 1. ]
f_min: [ 1. ]
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32 # unused
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 512
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
data:
target: main.DataModuleFromConfig
params:
batch_size: 4
num_workers: 4
wrap: false
train:
target: ldm.data.local.LocalDanbooruBase
params:
data_root: "./dataset"
size: 768
mode: "train"
validation:
target: ldm.data.local.LocalDanbooruBase
params:
data_root: "./dataset"
size: 768
mode: "val"
val_split: 64
lightning:
modelcheckpoint:
params:
every_n_train_steps: 500
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 500
max_images: 4
increase_log_steps: False
log_first_step: False
log_images_kwargs:
use_ema_scope: False
inpaint: False
plot_progressive_rows: False
plot_diffusion_rows: False
N: 4
ddim_steps: 50
trainer:
benchmark: True
val_check_interval: 5000000
num_sanity_val_steps: 0
accumulate_grad_batches: 1

View File

@ -11,10 +11,99 @@ import random
PIL.Image.MAX_IMAGE_PIXELS = 933120000
import torchvision
import pytorch_lightning as pl
import torch
import re
import json
import io
def resize_image(image: Image, max_size=(768,768)):
image = ImageOps.contain(image, max_size, Image.LANCZOS)
# resize to integer multiple of 64
w, h = image.size
w, h = map(lambda x: x - x % 64, (w, h))
ratio = w / h
src_ratio = image.width / image.height
src_w = w if ratio > src_ratio else image.width * h // image.height
src_h = h if ratio <= src_ratio else image.height * w // image.width
resized = image.resize((src_w, src_h), resample=Image.LANCZOS)
res = Image.new("RGB", (w, h))
res.paste(resized, box=(w // 2 - src_w // 2, h // 2 - src_h // 2))
return res
class CaptionProcessor(object):
def __init__(self, copyright_rate, character_rate, general_rate, artist_rate, normalize, caption_shuffle, transforms, max_size, resize, random_order):
self.copyright_rate = copyright_rate
self.character_rate = character_rate
self.general_rate = general_rate
self.artist_rate = artist_rate
self.normalize = normalize
self.caption_shuffle = caption_shuffle
self.transforms = transforms
self.max_size = max_size
self.resize = resize
self.random_order = random_order
def clean(self, text: str):
text = ' '.join(set([i.lstrip('_').rstrip('_') for i in re.sub(r'\([^)]*\)', '', text).split(' ')])).lstrip().rstrip()
if self.caption_shuffle:
text = text.split(' ')
random.shuffle(text)
text = ' '.join(text)
if self.normalize:
text = ', '.join([i.replace('_', ' ') for i in text.split(' ')]).lstrip(', ').rstrip(', ')
return text
def get_key(self, val_dict, key, clean_val = True, cond_drop = 0.0, prepend_space = False, append_comma = False):
space = ' ' if prepend_space else ''
comma = ',' if append_comma else ''
if random.random() < cond_drop:
if (key in val_dict) and val_dict[key]:
if clean_val:
return space + self.clean(val_dict[key]) + comma
else:
return space + val_dict[key] + comma
return ''
def __call__(self, sample):
# preprocess caption
caption_data = json.loads(sample['caption'])
if not self.random_order:
character = self.get_key(caption_data, 'tag_string_character', True, self.character_rate, False, True)
copyright = self.get_key(caption_data, 'tag_string_copyright', True, self.copyright_rate, True, True)
artist = self.get_key(caption_data, 'tag_string_artist', True, self.artist_rate, True, True)
general = self.get_key(caption_data, 'tag_string_general', True, self.general_rate, True, False)
tag_str = f'{character}{copyright}{artist}{general}'.lstrip().rstrip(',')
else:
character = self.get_key(caption_data, 'tag_string_character', False, self.character_rate, False)
copyright = self.get_key(caption_data, 'tag_string_copyright', False, self.copyright_rate, True, False)
artist = self.get_key(caption_data, 'tag_string_artist', False, self.artist_rate, True, False)
general = self.get_key(caption_data, 'tag_string_general', False, self.general_rate, True, False)
tag_str = self.clean(f'{character}{copyright}{artist}{general}').lstrip().rstrip(' ')
sample['caption'] = tag_str
# preprocess image
image = sample['image']
image = Image.open(io.BytesIO(image))
if self.resize:
image = resize_image(image, max_size=(self.max_size, self.max_size))
image = self.transforms(image)
image = np.array(image).astype(np.uint8)
sample['image'] = (image / 127.5 - 1.0).astype(np.float32)
return sample
class LocalBase(Dataset):
def __init__(self,
data_root='./danbooru-aesthetic',
size=512,
size=768,
interpolation="bicubic",
flip_p=0.5,
crop=True,

View File

@ -0,0 +1,213 @@
import os
import numpy as np
import PIL
from PIL import Image, ImageOps
from torch.utils.data import Dataset
from torchvision import transforms
import glob
import random
PIL.Image.MAX_IMAGE_PIXELS = 933120000
import torchvision
import pytorch_lightning as pl
import torch
import re
import json
import io
def resize_image(image: Image, max_size=(768,768)):
image = ImageOps.contain(image, max_size, Image.LANCZOS)
# resize to integer multiple of 64
w, h = image.size
w, h = map(lambda x: x - x % 64, (w, h))
ratio = w / h
src_ratio = image.width / image.height
src_w = w if ratio > src_ratio else image.width * h // image.height
src_h = h if ratio <= src_ratio else image.height * w // image.width
resized = image.resize((src_w, src_h), resample=Image.LANCZOS)
res = Image.new("RGB", (w, h))
res.paste(resized, box=(w // 2 - src_w // 2, h // 2 - src_h // 2))
return res
class CaptionProcessor(object):
def __init__(self, copyright_rate, character_rate, general_rate, artist_rate, normalize, caption_shuffle, transforms, max_size, resize, random_order):
self.copyright_rate = copyright_rate
self.character_rate = character_rate
self.general_rate = general_rate
self.artist_rate = artist_rate
self.normalize = normalize
self.caption_shuffle = caption_shuffle
self.transforms = transforms
self.max_size = max_size
self.resize = resize
self.random_order = random_order
def clean(self, text: str):
text = ' '.join(set([i.lstrip('_').rstrip('_') for i in re.sub(r'\([^)]*\)', '', text).split(' ')])).lstrip().rstrip()
if self.caption_shuffle:
text = text.split(' ')
random.shuffle(text)
text = ' '.join(text)
if self.normalize:
text = ', '.join([i.replace('_', ' ') for i in text.split(' ')]).lstrip(', ').rstrip(', ')
return text
def get_key(self, val_dict, key, clean_val = True, cond_drop = 0.0, prepend_space = False, append_comma = False):
space = ' ' if prepend_space else ''
comma = ',' if append_comma else ''
if random.random() < cond_drop:
if (key in val_dict) and val_dict[key]:
if clean_val:
return space + self.clean(val_dict[key]) + comma
else:
return space + val_dict[key] + comma
return ''
def __call__(self, sample):
# preprocess caption
caption_data = json.loads(sample['caption'])
if not self.random_order:
character = self.get_key(caption_data, 'tag_string_character', True, self.character_rate, False, True)
copyright = self.get_key(caption_data, 'tag_string_copyright', True, self.copyright_rate, True, True)
artist = self.get_key(caption_data, 'tag_string_artist', True, self.artist_rate, True, True)
general = self.get_key(caption_data, 'tag_string_general', True, self.general_rate, True, False)
tag_str = f'{character}{copyright}{artist}{general}'.lstrip().rstrip(',')
else:
character = self.get_key(caption_data, 'tag_string_character', False, self.character_rate, False)
copyright = self.get_key(caption_data, 'tag_string_copyright', False, self.copyright_rate, True, False)
artist = self.get_key(caption_data, 'tag_string_artist', False, self.artist_rate, True, False)
general = self.get_key(caption_data, 'tag_string_general', False, self.general_rate, True, False)
tag_str = self.clean(f'{character}{copyright}{artist}{general}').lstrip().rstrip(' ')
sample['caption'] = tag_str
# preprocess image
image = sample['image']
image = Image.open(io.BytesIO(image))
if self.resize:
image = resize_image(image, max_size=(self.max_size, self.max_size))
image = self.transforms(image)
image = np.array(image).astype(np.uint8)
sample['image'] = (image / 127.5 - 1.0).astype(np.float32)
return sample
class LocalDanbooruBase(Dataset):
def __init__(self,
data_root='./danbooru-aesthetic',
size=768,
interpolation="bicubic",
flip_p=0.5,
crop=True,
shuffle=False,
mode='train',
val_split=64,
):
super().__init__()
self.shuffle=shuffle
self.crop = crop
print('Fetching data.')
ext = ['image']
self.image_files = []
[self.image_files.extend(glob.glob(f'{data_root}' + '/*.' + e)) for e in ext]
if mode == 'val':
self.image_files = self.image_files[:len(self.image_files)//val_split]
print(f'Constructing image-caption map. Found {len(self.image_files)} images')
self.examples = {}
self.hashes = []
for i in self.image_files:
hash = i[len(f'{data_root}/'):].split('.')[0]
self.examples[hash] = {
'image': i,
'text': f'{data_root}/{hash}.caption'
}
self.hashes.append(hash)
print(f'image-caption map has {len(self.examples.keys())} examples')
self.size = size
self.interpolation = {"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
}[interpolation]
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
image_transforms = []
image_transforms.extend([torchvision.transforms.RandomHorizontalFlip(flip_p)],)
image_transforms = torchvision.transforms.Compose(image_transforms)
self.captionprocessor = CaptionProcessor(1.0, 1.0, 1.0, 1.0, True, True, image_transforms, 768, False, True)
def random_sample(self):
return self.__getitem__(random.randint(0, self.__len__() - 1))
def sequential_sample(self, i):
if i >= self.__len__() - 1:
return self.__getitem__(0)
return self.__getitem__(i + 1)
def skip_sample(self, i):
return None
def __len__(self):
return len(self.image_files)
def __getitem__(self, i):
return self.get_image(i)
def get_image(self, i):
image = {}
try:
image_file = self.examples[self.hashes[i]]['image']
with open(image_file, 'rb') as f:
image['image'] = f.read()
text_file = self.examples[self.hashes[i]]['text']
with open(text_file, 'rb') as f:
image['caption'] = f.read()
image = self.captionprocessor(image)
except Exception as e:
print(f'Error with {self.examples[self.hashes[i]]["image"]} -- {e} -- skipping {i}')
return self.skip_sample(i)
return image
"""
if __name__ == "__main__":
dataset = LocalBase('./danbooru-aesthetic', size=512, crop=False, mode='val')
print(dataset.__len__())
example = dataset.__getitem__(0)
print(dataset.hashes[0])
print(example['caption'])
image = example['image']
image = ((image + 1) * 127.5).astype(np.uint8)
image = Image.fromarray(image)
image.save('example.png')
"""
"""
from tqdm import tqdm
if __name__ == "__main__":
dataset = LocalDanbooruBase('./links', size=768)
import time
a = time.process_time()
for i in range(8):
example = dataset.get_image(i)
image = example['image']
image = ((image + 1) * 127.5).astype(np.uint8)
image = Image.fromarray(image)
image.save(f'example-{i}.png')
print(example['caption'])
print('time:', time.process_time()-a)
"""