1057 lines
47 KiB
Python
1057 lines
47 KiB
Python
# Install bitsandbytes:
|
|
# `nvcc --version` to get CUDA version.
|
|
# `pip install -i https://test.pypi.org/simple/ bitsandbytes-cudaXXX` to install for current CUDA.
|
|
# Example Usage:
|
|
# Single GPU: torchrun --nproc_per_node=1 trainer/diffusers_trainer.py --model="CompVis/stable-diffusion-v1-4" --run_name="liminal" --dataset="liminal-dataset" --hf_token="hf_blablabla" --bucket_side_min=64 --use_8bit_adam=True --gradient_checkpointing=True --batch_size=1 --fp16=True --image_log_steps=250 --epochs=20 --resolution=768 --use_ema=True
|
|
# Multiple GPUs: torchrun --nproc_per_node=N trainer/diffusers_trainer.py --model="CompVis/stable-diffusion-v1-4" --run_name="liminal" --dataset="liminal-dataset" --hf_token="hf_blablabla" --bucket_side_min=64 --use_8bit_adam=True --gradient_checkpointing=True --batch_size=10 --fp16=True --image_log_steps=250 --epochs=20 --resolution=768 --use_ema=True
|
|
|
|
import argparse
|
|
import socket
|
|
import torch
|
|
import torchvision
|
|
import transformers
|
|
import diffusers
|
|
import os
|
|
import glob
|
|
import random
|
|
import tqdm
|
|
import resource
|
|
import psutil
|
|
import pynvml
|
|
import wandb
|
|
import gc
|
|
import time
|
|
import itertools
|
|
import numpy as np
|
|
import json
|
|
import re
|
|
import traceback
|
|
import shutil
|
|
|
|
try:
|
|
pynvml.nvmlInit()
|
|
except pynvml.nvml.NVMLError_LibraryNotFound:
|
|
pynvml = None
|
|
|
|
from typing import Iterable
|
|
from diffusers import AutoencoderKL, UNet2DConditionModel, DDPMScheduler, PNDMScheduler, DDIMScheduler, StableDiffusionPipeline
|
|
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
|
from diffusers.optimization import get_scheduler
|
|
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
|
from PIL import Image, ImageOps
|
|
from PIL.Image import Image as Img
|
|
|
|
from typing import Dict, List, Generator, Tuple
|
|
from scipy.interpolate import interp1d
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
|
# defaults should be good for everyone
|
|
# TODO: add custom VAE support. should be simple with diffusers
|
|
bool_t = lambda x: x.lower() in ['true', 'yes', '1']
|
|
parser = argparse.ArgumentParser(description='Stable Diffusion Finetuner')
|
|
parser.add_argument('--model', type=str, default=None, required=True, help='The name of the model to use for finetuning. Could be HuggingFace ID or a directory')
|
|
parser.add_argument('--resume', type=str, default=None, help='The path to the checkpoint to resume from. If not specified, will create a new run.')
|
|
parser.add_argument('--run_name', type=str, default=None, required=True, help='Name of the finetune run.')
|
|
parser.add_argument('--dataset', type=str, default=None, required=True, help='The path to the dataset to use for finetuning.')
|
|
parser.add_argument('--num_buckets', type=int, default=16, help='The number of buckets.')
|
|
parser.add_argument('--bucket_side_min', type=int, default=256, help='The minimum side length of a bucket.')
|
|
parser.add_argument('--bucket_side_max', type=int, default=768, help='The maximum side length of a bucket.')
|
|
parser.add_argument('--lr', type=float, default=5e-6, help='Learning rate')
|
|
parser.add_argument('--epochs', type=int, default=10, help='Number of epochs to train for')
|
|
parser.add_argument('--batch_size', type=int, default=1, help='Batch size')
|
|
parser.add_argument('--use_ema', type=bool_t, default='False', help='Use EMA for finetuning')
|
|
parser.add_argument('--ucg', type=float, default=0.1, help='Percentage chance of dropping out the text condition per batch. Ranges from 0.0 to 1.0 where 1.0 means 100% text condition dropout.') # 10% dropout probability
|
|
parser.add_argument('--gradient_checkpointing', dest='gradient_checkpointing', type=bool_t, default='False', help='Enable gradient checkpointing')
|
|
parser.add_argument('--use_8bit_adam', dest='use_8bit_adam', type=bool_t, default='False', help='Use 8-bit Adam optimizer')
|
|
parser.add_argument('--adam_beta1', type=float, default=0.9, help='Adam beta1')
|
|
parser.add_argument('--adam_beta2', type=float, default=0.999, help='Adam beta2')
|
|
parser.add_argument('--adam_weight_decay', type=float, default=1e-2, help='Adam weight decay')
|
|
parser.add_argument('--adam_epsilon', type=float, default=1e-08, help='Adam epsilon')
|
|
parser.add_argument('--lr_scheduler', type=str, default='cosine', help='Learning rate scheduler [`cosine`, `linear`, `constant`]')
|
|
parser.add_argument('--lr_scheduler_warmup', type=float, default=0.05, help='Learning rate scheduler warmup steps. This is a percentage of the total number of steps in the training run. 0.1 means 10 percent of the total number of steps.')
|
|
parser.add_argument('--seed', type=int, default=42, help='Seed for random number generator, this is to be used for reproduceability purposes.')
|
|
parser.add_argument('--output_path', type=str, default='./output', help='Root path for all outputs.')
|
|
parser.add_argument('--save_steps', type=int, default=500, help='Number of steps to save checkpoints at.')
|
|
parser.add_argument('--resolution', type=int, default=512, help='Image resolution to train against. Lower res images will be scaled up to this resolution and higher res images will be scaled down.')
|
|
parser.add_argument('--shuffle', dest='shuffle', type=bool_t, default='True', help='Shuffle dataset')
|
|
parser.add_argument('--hf_token', type=str, default=None, required=False, help='A HuggingFace token is needed to download private models for training.')
|
|
parser.add_argument('--project_id', type=str, default='diffusers', help='Project ID for reporting to WandB')
|
|
parser.add_argument('--fp16', dest='fp16', type=bool_t, default='False', help='Train in mixed precision')
|
|
parser.add_argument('--image_log_steps', type=int, default=500, help='Number of steps to log images at.')
|
|
parser.add_argument('--image_log_amount', type=int, default=4, help='Number of images to log every image_log_steps')
|
|
parser.add_argument('--image_log_inference_steps', type=int, default=50, help='Number of inference steps to use to log images.')
|
|
parser.add_argument('--image_log_scheduler', type=str, default="PNDMScheduler", help='Number of inference steps to use to log images.')
|
|
parser.add_argument('--clip_penultimate', type=bool_t, default='False', help='Use penultimate CLIP layer for text embedding')
|
|
parser.add_argument('--output_bucket_info', type=bool_t, default='False', help='Outputs bucket information and exits')
|
|
parser.add_argument('--resize', type=bool_t, default='False', help="Resizes dataset's images to the appropriate bucket dimensions.")
|
|
parser.add_argument('--use_xformers', type=bool_t, default='False', help='Use memory efficient attention')
|
|
parser.add_argument('--wandb', dest='enablewandb', type=bool_t, default='True', help='Enable WeightsAndBiases Reporting')
|
|
parser.add_argument('--inference', dest='enableinference', type=bool_t, default='True', help='Enable Inference during training (Consumes 2GB of VRAM)')
|
|
parser.add_argument('--extended_validation', type=bool_t, default='False', help='Perform extended validation of images to catch truncated or corrupt images.')
|
|
parser.add_argument('--no_migration', type=bool_t, default='False', help='Do not perform migration of dataset while the `--resize` flag is active. Migration creates an adjacent folder to the dataset with <dataset_dirname>_cropped.')
|
|
parser.add_argument('--skip_validation', type=bool_t, default='False', help='Skip validation of images, useful for speeding up loading of very large datasets that have already been validated.')
|
|
parser.add_argument('--extended_mode_chunks', type=int, default=0, help='Enables extended mode for tokenization with given amount of maximum chunks. Values < 2 disable.')
|
|
parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder")
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
def setup():
|
|
torch.distributed.init_process_group("nccl", init_method="env://")
|
|
|
|
def cleanup():
|
|
torch.distributed.destroy_process_group()
|
|
|
|
def get_rank() -> int:
|
|
if not torch.distributed.is_initialized():
|
|
return 0
|
|
return torch.distributed.get_rank()
|
|
|
|
def get_world_size() -> int:
|
|
if not torch.distributed.is_initialized():
|
|
return 1
|
|
return torch.distributed.get_world_size()
|
|
|
|
def get_gpu_ram() -> str:
|
|
"""
|
|
Returns memory usage statistics for the CPU, GPU, and Torch.
|
|
|
|
:return:
|
|
"""
|
|
gpu_str = ""
|
|
torch_str = ""
|
|
try:
|
|
cudadev = torch.cuda.current_device()
|
|
nvml_device = pynvml.nvmlDeviceGetHandleByIndex(cudadev)
|
|
gpu_info = pynvml.nvmlDeviceGetMemoryInfo(nvml_device)
|
|
gpu_total = int(gpu_info.total / 1E6)
|
|
gpu_free = int(gpu_info.free / 1E6)
|
|
gpu_used = int(gpu_info.used / 1E6)
|
|
gpu_str = f"GPU: (U: {gpu_used:,}mb F: {gpu_free:,}mb " \
|
|
f"T: {gpu_total:,}mb) "
|
|
torch_reserved_gpu = int(torch.cuda.memory.memory_reserved() / 1E6)
|
|
torch_reserved_max = int(torch.cuda.memory.max_memory_reserved() / 1E6)
|
|
torch_used_gpu = int(torch.cuda.memory_allocated() / 1E6)
|
|
torch_max_used_gpu = int(torch.cuda.max_memory_allocated() / 1E6)
|
|
torch_str = f"TORCH: (R: {torch_reserved_gpu:,}mb/" \
|
|
f"{torch_reserved_max:,}mb, " \
|
|
f"A: {torch_used_gpu:,}mb/{torch_max_used_gpu:,}mb)"
|
|
except AssertionError:
|
|
pass
|
|
cpu_maxrss = int(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1E3 +
|
|
resource.getrusage(
|
|
resource.RUSAGE_CHILDREN).ru_maxrss / 1E3)
|
|
cpu_vmem = psutil.virtual_memory()
|
|
cpu_free = int(cpu_vmem.free / 1E6)
|
|
return f"CPU: (maxrss: {cpu_maxrss:,}mb F: {cpu_free:,}mb) " \
|
|
f"{gpu_str}" \
|
|
f"{torch_str}"
|
|
|
|
def _sort_by_ratio(bucket: tuple) -> float:
|
|
return bucket[0] / bucket[1]
|
|
|
|
def _sort_by_area(bucket: tuple) -> float:
|
|
return bucket[0] * bucket[1]
|
|
|
|
class Validation():
|
|
def __init__(self, is_skipped: bool, is_extended: bool) -> None:
|
|
if is_skipped:
|
|
self.validate = self.__no_op
|
|
return print("Validation: Skipped")
|
|
|
|
if is_extended:
|
|
self.validate = self.__extended_validate
|
|
return print("Validation: Extended")
|
|
|
|
self.validate = self.__validate
|
|
print("Validation: Standard")
|
|
|
|
def __validate(self, fp: str) -> bool:
|
|
try:
|
|
Image.open(fp)
|
|
return True
|
|
except:
|
|
print(f'WARNING: Image cannot be opened: {fp}')
|
|
return False
|
|
|
|
def __extended_validate(self, fp: str) -> bool:
|
|
try:
|
|
Image.open(fp).load()
|
|
return True
|
|
except (OSError) as error:
|
|
if 'truncated' in str(error):
|
|
print(f'WARNING: Image truncated: {error}')
|
|
return False
|
|
print(f'WARNING: Image cannot be opened: {error}')
|
|
return False
|
|
except:
|
|
print(f'WARNING: Image cannot be opened: {error}')
|
|
return False
|
|
|
|
def __no_op(self, fp: str) -> bool:
|
|
return True
|
|
|
|
class Resize():
|
|
def __init__(self, is_resizing: bool, is_not_migrating: bool) -> None:
|
|
if not is_resizing:
|
|
self.resize = self.__no_op
|
|
return
|
|
|
|
if not is_not_migrating:
|
|
self.resize = self.__migration
|
|
dataset_path = os.path.split(args.dataset)
|
|
self.__directory = os.path.join(
|
|
dataset_path[0],
|
|
f'{dataset_path[1]}_cropped'
|
|
)
|
|
os.makedirs(self.__directory, exist_ok=True)
|
|
return print(f"Resizing: Performing migration to '{self.__directory}'.")
|
|
|
|
self.resize = self.__no_migration
|
|
|
|
def __no_migration(self, image_path: str, w: int, h: int) -> Img:
|
|
return ImageOps.fit(
|
|
Image.open(image_path),
|
|
(w, h),
|
|
bleed=0.0,
|
|
centering=(0.5, 0.5),
|
|
method=Image.Resampling.LANCZOS
|
|
).convert(mode='RGB')
|
|
|
|
def __migration(self, image_path: str, w: int, h: int) -> Img:
|
|
filename = re.sub('\.[^/.]+$', '', os.path.split(image_path)[1])
|
|
|
|
image = ImageOps.fit(
|
|
Image.open(image_path),
|
|
(w, h),
|
|
bleed=0.0,
|
|
centering=(0.5, 0.5),
|
|
method=Image.Resampling.LANCZOS
|
|
).convert(mode='RGB')
|
|
|
|
image.save(
|
|
os.path.join(f'{self.__directory}', f'{filename}.jpg'),
|
|
optimize=True
|
|
)
|
|
|
|
try:
|
|
shutil.copy(
|
|
os.path.join(args.dataset, f'{filename}.txt'),
|
|
os.path.join(self.__directory, f'{filename}.txt'),
|
|
follow_symlinks=False
|
|
)
|
|
except (FileNotFoundError):
|
|
f = open(
|
|
os.path.join(self.__directory, f'{filename}.txt'),
|
|
'w',
|
|
encoding='UTF-8'
|
|
)
|
|
f.close()
|
|
|
|
return image
|
|
|
|
def __no_op(self, image_path: str, w: int, h: int) -> Img:
|
|
return Image.open(image_path)
|
|
|
|
class ImageStore:
|
|
def __init__(self, data_dir: str) -> None:
|
|
self.data_dir = data_dir
|
|
|
|
self.image_files = []
|
|
[self.image_files.extend(glob.glob(f'{data_dir}' + '/*.' + e)) for e in ['jpg', 'jpeg', 'png', 'bmp', 'webp']]
|
|
|
|
self.validator = Validation(
|
|
args.skip_validation,
|
|
args.extended_validation
|
|
).validate
|
|
|
|
self.resizer = Resize(args.resize, args.no_migration).resize
|
|
|
|
self.image_files = [x for x in self.image_files if self.validator(x)]
|
|
|
|
def __len__(self) -> int:
|
|
return len(self.image_files)
|
|
|
|
# iterator returns images as PIL images and their index in the store
|
|
def entries_iterator(self) -> Generator[Tuple[Img, int], None, None]:
|
|
for f in range(len(self)):
|
|
yield Image.open(self.image_files[f]), f
|
|
|
|
# get image by index
|
|
def get_image(self, ref: Tuple[int, int, int]) -> Img:
|
|
return self.resizer(
|
|
self.image_files[ref[0]],
|
|
ref[1],
|
|
ref[2]
|
|
)
|
|
|
|
# gets caption by removing the extension from the filename and replacing it with .txt
|
|
def get_caption(self, ref: Tuple[int, int, int]) -> str:
|
|
filename = re.sub('\.[^/.]+$', '', self.image_files[ref[0]]) + '.txt'
|
|
with open(filename, 'r', encoding='UTF-8') as f:
|
|
return f.read()
|
|
|
|
|
|
# ====================================== #
|
|
# Bucketing code stolen from hasuwoof: #
|
|
# https://github.com/hasuwoof/huskystack #
|
|
# ====================================== #
|
|
|
|
class AspectBucket:
|
|
def __init__(self, store: ImageStore,
|
|
num_buckets: int,
|
|
batch_size: int,
|
|
bucket_side_min: int = 256,
|
|
bucket_side_max: int = 768,
|
|
bucket_side_increment: int = 64,
|
|
max_image_area: int = 512 * 768,
|
|
max_ratio: float = 2):
|
|
|
|
self.requested_bucket_count = num_buckets
|
|
self.bucket_length_min = bucket_side_min
|
|
self.bucket_length_max = bucket_side_max
|
|
self.bucket_increment = bucket_side_increment
|
|
self.max_image_area = max_image_area
|
|
self.batch_size = batch_size
|
|
self.total_dropped = 0
|
|
|
|
if max_ratio <= 0:
|
|
self.max_ratio = float('inf')
|
|
else:
|
|
self.max_ratio = max_ratio
|
|
|
|
self.store = store
|
|
self.buckets = []
|
|
self._bucket_ratios = []
|
|
self._bucket_interp = None
|
|
self.bucket_data: Dict[tuple, List[int]] = dict()
|
|
self.init_buckets()
|
|
self.fill_buckets()
|
|
|
|
def init_buckets(self):
|
|
possible_lengths = list(range(self.bucket_length_min, self.bucket_length_max + 1, self.bucket_increment))
|
|
possible_buckets = list((w, h) for w, h in itertools.product(possible_lengths, possible_lengths)
|
|
if w >= h and w * h <= self.max_image_area and w / h <= self.max_ratio)
|
|
|
|
buckets_by_ratio = {}
|
|
|
|
# group the buckets by their aspect ratios
|
|
for bucket in possible_buckets:
|
|
w, h = bucket
|
|
# use precision to avoid spooky floats messing up your day
|
|
ratio = '{:.4e}'.format(w / h)
|
|
|
|
if ratio not in buckets_by_ratio:
|
|
group = set()
|
|
buckets_by_ratio[ratio] = group
|
|
else:
|
|
group = buckets_by_ratio[ratio]
|
|
|
|
group.add(bucket)
|
|
|
|
# now we take the list of buckets we generated and pick the largest by area for each (the first sorted)
|
|
# then we put all of those in a list, sorted by the aspect ratio
|
|
# the square bucket (LxL) will be the first
|
|
unique_ratio_buckets = sorted([sorted(buckets, key=_sort_by_area)[-1]
|
|
for buckets in buckets_by_ratio.values()], key=_sort_by_ratio)
|
|
|
|
# how many buckets to create for each side of the distribution
|
|
bucket_count_each = int(np.clip((self.requested_bucket_count + 1) / 2, 1, len(unique_ratio_buckets)))
|
|
|
|
# we know that the requested_bucket_count must be an odd number, so the indices we calculate
|
|
# will include the square bucket and some linearly spaced buckets along the distribution
|
|
indices = {*np.linspace(0, len(unique_ratio_buckets) - 1, bucket_count_each, dtype=int)}
|
|
|
|
# make the buckets, make sure they are unique (to remove the duplicated square bucket), and sort them by ratio
|
|
# here we add the portrait buckets by reversing the dimensions of the landscape buckets we generated above
|
|
buckets = sorted({*(unique_ratio_buckets[i] for i in indices),
|
|
*(tuple(reversed(unique_ratio_buckets[i])) for i in indices)}, key=_sort_by_ratio)
|
|
|
|
self.buckets = buckets
|
|
|
|
# cache the bucket ratios and the interpolator that will be used for calculating the best bucket later
|
|
# the interpolator makes a 1d piecewise interpolation where the input (x-axis) is the bucket ratio,
|
|
# and the output is the bucket index in the self.buckets array
|
|
# to find the best fit we can just round that number to get the index
|
|
self._bucket_ratios = [w / h for w, h in buckets]
|
|
self._bucket_interp = interp1d(self._bucket_ratios, list(range(len(buckets))), assume_sorted=True,
|
|
fill_value=None)
|
|
|
|
for b in buckets:
|
|
self.bucket_data[b] = []
|
|
|
|
def get_batch_count(self):
|
|
return sum(len(b) // self.batch_size for b in self.bucket_data.values())
|
|
|
|
def get_bucket_info(self):
|
|
return json.dumps({ "buckets": self.buckets, "bucket_ratios": self._bucket_ratios })
|
|
|
|
def get_batch_iterator(self) -> Generator[Tuple[Tuple[int, int, int]], None, None]:
|
|
"""
|
|
Generator that provides batches where the images in a batch fall on the same bucket
|
|
|
|
Each element generated will be:
|
|
(index, w, h)
|
|
|
|
where each image is an index into the dataset
|
|
:return:
|
|
"""
|
|
max_bucket_len = max(len(b) for b in self.bucket_data.values())
|
|
index_schedule = list(range(max_bucket_len))
|
|
random.shuffle(index_schedule)
|
|
|
|
bucket_len_table = {
|
|
b: len(self.bucket_data[b]) for b in self.buckets
|
|
}
|
|
|
|
bucket_schedule = []
|
|
for i, b in enumerate(self.buckets):
|
|
bucket_schedule.extend([i] * (bucket_len_table[b] // self.batch_size))
|
|
|
|
random.shuffle(bucket_schedule)
|
|
|
|
bucket_pos = {
|
|
b: 0 for b in self.buckets
|
|
}
|
|
|
|
total_generated_by_bucket = {
|
|
b: 0 for b in self.buckets
|
|
}
|
|
|
|
for bucket_index in bucket_schedule:
|
|
b = self.buckets[bucket_index]
|
|
i = bucket_pos[b]
|
|
bucket_len = bucket_len_table[b]
|
|
|
|
batch = []
|
|
while len(batch) != self.batch_size:
|
|
# advance in the schedule until we find an index that is contained in the bucket
|
|
k = index_schedule[i]
|
|
if k < bucket_len:
|
|
entry = self.bucket_data[b][k]
|
|
batch.append(entry)
|
|
|
|
i += 1
|
|
|
|
total_generated_by_bucket[b] += self.batch_size
|
|
bucket_pos[b] = i
|
|
yield [(idx, *b) for idx in batch]
|
|
|
|
def fill_buckets(self):
|
|
entries = self.store.entries_iterator()
|
|
total_dropped = 0
|
|
|
|
for entry, index in tqdm.tqdm(entries, total=len(self.store)):
|
|
if not self._process_entry(entry, index):
|
|
total_dropped += 1
|
|
|
|
for b, values in self.bucket_data.items():
|
|
# shuffle the entries for extra randomness and to make sure dropped elements are also random
|
|
random.shuffle(values)
|
|
|
|
# make sure the buckets have an exact number of elements for the batch
|
|
to_drop = len(values) % self.batch_size
|
|
self.bucket_data[b] = list(values[:len(values) - to_drop])
|
|
total_dropped += to_drop
|
|
|
|
self.total_dropped = total_dropped
|
|
|
|
def _process_entry(self, entry: Image.Image, index: int) -> bool:
|
|
aspect = entry.width / entry.height
|
|
|
|
if aspect > self.max_ratio or (1 / aspect) > self.max_ratio:
|
|
return False
|
|
|
|
best_bucket = self._bucket_interp(aspect)
|
|
|
|
if best_bucket is None:
|
|
return False
|
|
|
|
bucket = self.buckets[round(float(best_bucket))]
|
|
|
|
self.bucket_data[bucket].append(index)
|
|
|
|
del entry
|
|
|
|
return True
|
|
|
|
class AspectBucketSampler(torch.utils.data.Sampler):
|
|
def __init__(self, bucket: AspectBucket, num_replicas: int = 1, rank: int = 0):
|
|
super().__init__(None)
|
|
self.bucket = bucket
|
|
self.num_replicas = num_replicas
|
|
self.rank = rank
|
|
|
|
def __iter__(self):
|
|
# subsample the bucket to only include the elements that are assigned to this rank
|
|
indices = self.bucket.get_batch_iterator()
|
|
indices = list(indices)[self.rank::self.num_replicas]
|
|
return iter(indices)
|
|
|
|
def __len__(self):
|
|
return self.bucket.get_batch_count() // self.num_replicas
|
|
|
|
class AspectDataset(torch.utils.data.Dataset):
|
|
def __init__(self, store: ImageStore, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModel, device: torch.device, ucg: float = 0.1):
|
|
self.store = store
|
|
self.tokenizer = tokenizer
|
|
self.text_encoder = text_encoder
|
|
self.device = device
|
|
self.ucg = ucg
|
|
|
|
if type(self.text_encoder) is torch.nn.parallel.DistributedDataParallel:
|
|
self.text_encoder = self.text_encoder.module
|
|
|
|
self.transforms = torchvision.transforms.Compose([
|
|
torchvision.transforms.RandomHorizontalFlip(p=0.5),
|
|
torchvision.transforms.ToTensor(),
|
|
torchvision.transforms.Normalize([0.5], [0.5])
|
|
])
|
|
|
|
def __len__(self):
|
|
return len(self.store)
|
|
|
|
def __getitem__(self, item: Tuple[int, int, int]):
|
|
return_dict = {'pixel_values': None, 'input_ids': None}
|
|
|
|
image_file = self.store.get_image(item)
|
|
|
|
return_dict['pixel_values'] = self.transforms(image_file)
|
|
if random.random() > self.ucg:
|
|
caption_file = self.store.get_caption(item)
|
|
else:
|
|
caption_file = ''
|
|
|
|
return_dict['input_ids'] = caption_file
|
|
return return_dict
|
|
|
|
def collate_fn(self, examples):
|
|
pixel_values = torch.stack([example['pixel_values'] for example in examples if example is not None])
|
|
pixel_values.to(memory_format=torch.contiguous_format).float()
|
|
|
|
if args.extended_mode_chunks < 2:
|
|
max_length = self.tokenizer.model_max_length - 2
|
|
input_ids = [self.tokenizer([example['input_ids']], truncation=True, return_length=True, return_overflowing_tokens=False, padding=False, add_special_tokens=False, max_length=max_length).input_ids for example in examples if example is not None]
|
|
else:
|
|
max_length = self.tokenizer.model_max_length
|
|
max_chunks = args.extended_mode_chunks
|
|
input_ids = [self.tokenizer([example['input_ids']], truncation=True, return_length=True, return_overflowing_tokens=False, padding=False, add_special_tokens=False, max_length=(max_length * max_chunks) - (max_chunks * 2)).input_ids[0] for example in examples if example is not None]
|
|
|
|
tokens = input_ids
|
|
|
|
if args.extended_mode_chunks < 2:
|
|
for i, x in enumerate(input_ids):
|
|
for j, y in enumerate(x):
|
|
input_ids[i][j] = [self.tokenizer.bos_token_id, *y, *np.full((self.tokenizer.model_max_length - len(y) - 1), self.tokenizer.eos_token_id)]
|
|
|
|
if args.clip_penultimate:
|
|
input_ids = [self.text_encoder.text_model.final_layer_norm(self.text_encoder(torch.asarray(input_id).to(self.device), output_hidden_states=True)['hidden_states'][-2])[0] for input_id in input_ids]
|
|
else:
|
|
input_ids = [self.text_encoder(torch.asarray(input_id).to(self.device), output_hidden_states=True).last_hidden_state[0] for input_id in input_ids]
|
|
else:
|
|
max_standard_tokens = max_length - 2
|
|
max_chunks = args.extended_mode_chunks
|
|
max_len = np.ceil(max(len(x) for x in input_ids) / max_standard_tokens).astype(int).item() * max_standard_tokens
|
|
if max_len > max_standard_tokens:
|
|
z = None
|
|
for i, x in enumerate(input_ids):
|
|
if len(x) < max_len:
|
|
input_ids[i] = [*x, *np.full((max_len - len(x)), self.tokenizer.eos_token_id)]
|
|
batch_t = torch.tensor(input_ids)
|
|
chunks = [batch_t[:, i:i + max_standard_tokens] for i in range(0, max_len, max_standard_tokens)]
|
|
for chunk in chunks:
|
|
chunk = torch.cat((torch.full((chunk.shape[0], 1), self.tokenizer.bos_token_id), chunk, torch.full((chunk.shape[0], 1), self.tokenizer.eos_token_id)), 1)
|
|
if z is None:
|
|
if args.clip_penultimate:
|
|
z = self.text_encoder.text_model.final_layer_norm(self.text_encoder(chunk.to(self.device), output_hidden_states=True)['hidden_states'][-2])
|
|
else:
|
|
z = self.text_encoder(chunk.to(self.device), output_hidden_states=True).last_hidden_state
|
|
else:
|
|
if args.clip_penultimate:
|
|
z = torch.cat((z, self.text_encoder.text_model.final_layer_norm(self.text_encoder(chunk.to(self.device), output_hidden_states=True)['hidden_states'][-2])), dim=-2)
|
|
else:
|
|
z = torch.cat((z, self.text_encoder(chunk.to(self.device), output_hidden_states=True).last_hidden_state), dim=-2)
|
|
input_ids = z
|
|
else:
|
|
for i, x in enumerate(input_ids):
|
|
input_ids[i] = [self.tokenizer.bos_token_id, *x, *np.full((self.tokenizer.model_max_length - len(x) - 1), self.tokenizer.eos_token_id)]
|
|
if args.clip_penultimate:
|
|
input_ids = self.text_encoder.text_model.final_layer_norm(self.text_encoder(torch.asarray(input_ids).to(self.device), output_hidden_states=True)['hidden_states'][-2])
|
|
else:
|
|
input_ids = self.text_encoder(torch.asarray(input_ids).to(self.device), output_hidden_states=True).last_hidden_state
|
|
input_ids = torch.stack(tuple(input_ids))
|
|
|
|
return {
|
|
'pixel_values': pixel_values,
|
|
'input_ids': input_ids,
|
|
'tokens': tokens
|
|
}
|
|
|
|
# Adapted from torch-ema https://github.com/fadel/pytorch_ema/blob/master/torch_ema/ema.py#L14
|
|
class EMAModel:
|
|
"""
|
|
Exponential Moving Average of models weights
|
|
"""
|
|
|
|
def __init__(self, parameters: Iterable[torch.nn.Parameter], decay=0.9999):
|
|
parameters = list(parameters)
|
|
self.shadow_params = [p.clone().detach() for p in parameters]
|
|
|
|
self.decay = decay
|
|
self.optimization_step = 0
|
|
|
|
def get_decay(self, optimization_step):
|
|
"""
|
|
Compute the decay factor for the exponential moving average.
|
|
"""
|
|
value = (1 + optimization_step) / (10 + optimization_step)
|
|
return 1 - min(self.decay, value)
|
|
|
|
@torch.no_grad()
|
|
def step(self, parameters):
|
|
parameters = list(parameters)
|
|
|
|
self.optimization_step += 1
|
|
self.decay = self.get_decay(self.optimization_step)
|
|
|
|
for s_param, param in zip(self.shadow_params, parameters):
|
|
if param.requires_grad:
|
|
tmp = self.decay * (s_param - param)
|
|
s_param.sub_(tmp)
|
|
else:
|
|
s_param.copy_(param)
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
def copy_to(self, parameters: Iterable[torch.nn.Parameter]) -> None:
|
|
"""
|
|
Copy current averaged parameters into given collection of parameters.
|
|
Args:
|
|
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
|
updated with the stored moving averages. If `None`, the
|
|
parameters with which this `ExponentialMovingAverage` was
|
|
initialized will be used.
|
|
"""
|
|
parameters = list(parameters)
|
|
for s_param, param in zip(self.shadow_params, parameters):
|
|
param.data.copy_(s_param.data)
|
|
|
|
# From CompVis LitEMA implementation
|
|
def store(self, parameters):
|
|
"""
|
|
Save the current parameters for restoring later.
|
|
Args:
|
|
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
|
temporarily stored.
|
|
"""
|
|
self.collected_params = [param.clone() for param in parameters]
|
|
|
|
def restore(self, parameters):
|
|
"""
|
|
Restore the parameters stored with the `store` method.
|
|
Useful to validate the model with EMA parameters without affecting the
|
|
original optimization process. Store the parameters before the
|
|
`copy_to` method. After validation (or model saving), use this to
|
|
restore the former parameters.
|
|
Args:
|
|
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
|
updated with the stored parameters.
|
|
"""
|
|
for c_param, param in zip(self.collected_params, parameters):
|
|
param.data.copy_(c_param.data)
|
|
|
|
del self.collected_params
|
|
gc.collect()
|
|
|
|
def to(self, device=None, dtype=None) -> None:
|
|
r"""Move internal buffers of the ExponentialMovingAverage to `device`.
|
|
Args:
|
|
device: like `device` argument to `torch.Tensor.to`
|
|
"""
|
|
# .to() on the tensors handles None correctly
|
|
self.shadow_params = [
|
|
p.to(device=device, dtype=dtype) if p.is_floating_point() else p.to(device=device)
|
|
for p in self.shadow_params
|
|
]
|
|
|
|
def main():
|
|
rank = get_rank()
|
|
world_size = get_world_size()
|
|
torch.cuda.set_device(rank)
|
|
|
|
if rank == 0:
|
|
os.makedirs(args.output_path, exist_ok=True)
|
|
|
|
mode = 'disabled'
|
|
if args.enablewandb:
|
|
mode = 'online'
|
|
if args.hf_token is not None:
|
|
os.environ['HF_API_TOKEN'] = args.hf_token
|
|
args.hf_token = None
|
|
run = wandb.init(project=args.project_id, name=args.run_name, config=vars(args), dir=args.output_path+'/wandb', mode=mode)
|
|
|
|
# Inform the user of host, and various versions -- useful for debugging issues.
|
|
print("RUN_NAME:", args.run_name)
|
|
print("HOST:", socket.gethostname())
|
|
print("CUDA:", torch.version.cuda)
|
|
print("TORCH:", torch.__version__)
|
|
print("TRANSFORMERS:", transformers.__version__)
|
|
print("DIFFUSERS:", diffusers.__version__)
|
|
print("MODEL:", args.model)
|
|
print("FP16:", args.fp16)
|
|
print("RESOLUTION:", args.resolution)
|
|
|
|
|
|
if args.hf_token is not None:
|
|
print('It is recommended to set the HF_API_TOKEN environment variable instead of passing it as a command line argument since WandB will automatically log it.')
|
|
else:
|
|
try:
|
|
args.hf_token = os.environ['HF_API_TOKEN']
|
|
print("HF Token set via enviroment variable")
|
|
except Exception:
|
|
print("No HF Token detected in arguments or enviroment variable, setting it to none (as in string)")
|
|
args.hf_token = "none"
|
|
|
|
device = torch.device('cuda')
|
|
|
|
print("DEVICE:", device)
|
|
|
|
# setup fp16 stuff
|
|
scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
|
|
|
|
# Set seed
|
|
torch.manual_seed(args.seed)
|
|
random.seed(args.seed)
|
|
np.random.seed(args.seed)
|
|
print('RANDOM SEED:', args.seed)
|
|
|
|
if args.resume:
|
|
args.model = args.resume
|
|
|
|
tokenizer = CLIPTokenizer.from_pretrained(args.model, subfolder='tokenizer', use_auth_token=args.hf_token)
|
|
text_encoder = CLIPTextModel.from_pretrained(args.model, subfolder='text_encoder', use_auth_token=args.hf_token)
|
|
vae = AutoencoderKL.from_pretrained(args.model, subfolder='vae', use_auth_token=args.hf_token)
|
|
unet = UNet2DConditionModel.from_pretrained(args.model, subfolder='unet', use_auth_token=args.hf_token)
|
|
|
|
# Freeze vae and text_encoder
|
|
vae.requires_grad_(False)
|
|
if not args.train_text_encoder:
|
|
text_encoder.requires_grad_(False)
|
|
|
|
if args.gradient_checkpointing:
|
|
unet.enable_gradient_checkpointing()
|
|
if args.train_text_encoder:
|
|
text_encoder.gradient_checkpointing_enable()
|
|
|
|
if args.use_xformers:
|
|
unet.set_use_memory_efficient_attention_xformers(True)
|
|
|
|
# "The “safer” approach would be to move the model to the device first and create the optimizer afterwards."
|
|
weight_dtype = torch.float16 if args.fp16 else torch.float32
|
|
|
|
# move models to device
|
|
vae = vae.to(device, dtype=weight_dtype)
|
|
unet = unet.to(device, dtype=torch.float32)
|
|
text_encoder = text_encoder.to(device, dtype=weight_dtype if not args.train_text_encoder else torch.float32)
|
|
|
|
unet = torch.nn.parallel.DistributedDataParallel(
|
|
unet,
|
|
device_ids=[rank],
|
|
output_device=rank,
|
|
gradient_as_bucket_view=True
|
|
)
|
|
|
|
if args.train_text_encoder:
|
|
text_encoder = torch.nn.parallel.DistributedDataParallel(
|
|
text_encoder,
|
|
device_ids=[rank],
|
|
output_device=rank,
|
|
gradient_as_bucket_view=True
|
|
)
|
|
|
|
if args.use_8bit_adam: # Bits and bytes is only supported on certain CUDA setups, so default to regular adam if it fails.
|
|
try:
|
|
import bitsandbytes as bnb
|
|
optimizer_cls = bnb.optim.AdamW8bit
|
|
except:
|
|
print('bitsandbytes not supported, using regular Adam optimizer')
|
|
optimizer_cls = torch.optim.AdamW
|
|
else:
|
|
optimizer_cls = torch.optim.AdamW
|
|
|
|
"""
|
|
optimizer = optimizer_cls(
|
|
unet.parameters(),
|
|
lr=args.lr,
|
|
betas=(args.adam_beta1, args.adam_beta2),
|
|
eps=args.adam_epsilon,
|
|
weight_decay=args.adam_weight_decay,
|
|
)
|
|
"""
|
|
|
|
optimizer_parameters = unet.parameters() if not args.train_text_encoder else itertools.chain(unet.parameters(), text_encoder.parameters())
|
|
|
|
# Create distributed optimizer
|
|
from torch.distributed.optim import ZeroRedundancyOptimizer
|
|
optimizer = ZeroRedundancyOptimizer(
|
|
optimizer_parameters,
|
|
optimizer_class=optimizer_cls,
|
|
parameters_as_bucket_view=True,
|
|
lr=args.lr,
|
|
betas=(args.adam_beta1, args.adam_beta2),
|
|
eps=args.adam_epsilon,
|
|
weight_decay=args.adam_weight_decay,
|
|
)
|
|
|
|
|
|
noise_scheduler = DDPMScheduler.from_pretrained(
|
|
args.model,
|
|
subfolder='scheduler',
|
|
use_auth_token=args.hf_token,
|
|
)
|
|
|
|
# load dataset
|
|
store = ImageStore(args.dataset)
|
|
dataset = AspectDataset(store, tokenizer, text_encoder, device, ucg=args.ucg)
|
|
bucket = AspectBucket(store, args.num_buckets, args.batch_size, args.bucket_side_min, args.bucket_side_max, 64, args.resolution * args.resolution, 2.0)
|
|
sampler = AspectBucketSampler(bucket=bucket, num_replicas=world_size, rank=rank)
|
|
|
|
print(f'STORE_LEN: {len(store)}')
|
|
|
|
if args.output_bucket_info:
|
|
print(bucket.get_bucket_info())
|
|
exit(0)
|
|
|
|
train_dataloader = torch.utils.data.DataLoader(
|
|
dataset,
|
|
batch_sampler=sampler,
|
|
num_workers=0,
|
|
collate_fn=dataset.collate_fn
|
|
)
|
|
|
|
# Migrate dataset
|
|
if args.resize and not args.no_migration:
|
|
for _, batch in enumerate(train_dataloader):
|
|
continue
|
|
print(f"Completed resize and migration to '{args.dataset}_cropped' please relaunch the trainer without the --resize argument and train on the migrated dataset.")
|
|
exit(0)
|
|
|
|
# create ema
|
|
if args.use_ema:
|
|
ema_unet = EMAModel(unet.parameters())
|
|
|
|
print(get_gpu_ram())
|
|
|
|
num_steps_per_epoch = len(train_dataloader)
|
|
progress_bar = tqdm.tqdm(range(args.epochs * num_steps_per_epoch), desc="Total Steps", leave=False)
|
|
global_step = 0
|
|
|
|
if args.resume:
|
|
target_global_step = int(args.resume.split('_')[-1])
|
|
print(f'resuming from {args.resume}...')
|
|
|
|
lr_scheduler = get_scheduler(
|
|
args.lr_scheduler,
|
|
optimizer=optimizer,
|
|
num_warmup_steps=int(args.lr_scheduler_warmup * num_steps_per_epoch * args.epochs),
|
|
num_training_steps=args.epochs * num_steps_per_epoch,
|
|
#last_epoch=(global_step // num_steps_per_epoch) - 1,
|
|
)
|
|
|
|
def save_checkpoint(global_step):
|
|
if rank == 0:
|
|
if args.use_ema:
|
|
ema_unet.store(unet.parameters())
|
|
ema_unet.copy_to(unet.parameters())
|
|
pipeline = StableDiffusionPipeline(
|
|
text_encoder=text_encoder if type(text_encoder) is not torch.nn.parallel.DistributedDataParallel else text_encoder.module,
|
|
vae=vae,
|
|
unet=unet.module,
|
|
tokenizer=tokenizer,
|
|
scheduler=PNDMScheduler.from_pretrained(args.model, subfolder="scheduler", use_auth_token=args.hf_token),
|
|
safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker"),
|
|
feature_extractor=CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32"),
|
|
)
|
|
print(f'saving checkpoint to: {args.output_path}/{args.run_name}_{global_step}')
|
|
pipeline.save_pretrained(f'{args.output_path}/{args.run_name}_{global_step}')
|
|
|
|
if args.use_ema:
|
|
ema_unet.restore(unet.parameters())
|
|
|
|
# train!
|
|
try:
|
|
loss = torch.tensor(0.0, device=device, dtype=weight_dtype)
|
|
for epoch in range(args.epochs):
|
|
unet.train()
|
|
if args.train_text_encoder:
|
|
text_encoder.train()
|
|
for _, batch in enumerate(train_dataloader):
|
|
if args.resume and global_step < target_global_step:
|
|
if rank == 0:
|
|
progress_bar.update(1)
|
|
global_step += 1
|
|
continue
|
|
|
|
b_start = time.perf_counter()
|
|
latents = vae.encode(batch['pixel_values'].to(device, dtype=weight_dtype)).latent_dist.sample()
|
|
latents = latents * 0.18215
|
|
|
|
# Sample noise
|
|
noise = torch.randn_like(latents)
|
|
bsz = latents.shape[0]
|
|
# Sample a random timestep for each image
|
|
timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device)
|
|
timesteps = timesteps.long()
|
|
|
|
# Add noise to the latents according to the noise magnitude at each timestep
|
|
# (this is the forward diffusion process)
|
|
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
|
|
|
# Get the embedding for conditioning
|
|
encoder_hidden_states = batch['input_ids']
|
|
|
|
if noise_scheduler.config.prediction_type == "epsilon":
|
|
target = noise
|
|
elif noise_scheduler.config.prediction_type == "v_prediction":
|
|
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
|
else:
|
|
raise ValueError(f"Unknown prediction type: {noise_scheduler.config.prediction_type}")
|
|
|
|
if not args.train_text_encoder:
|
|
with unet.join():
|
|
# Predict the noise residual and compute loss
|
|
with torch.autocast('cuda', enabled=args.fp16):
|
|
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
|
|
|
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="mean")
|
|
|
|
# backprop and update
|
|
scaler.scale(loss).backward()
|
|
torch.nn.utils.clip_grad_norm_(unet.parameters(), 1.0)
|
|
scaler.step(optimizer)
|
|
scaler.update()
|
|
lr_scheduler.step()
|
|
optimizer.zero_grad()
|
|
else:
|
|
with unet.join(), text_encoder.join():
|
|
# Predict the noise residual and compute loss
|
|
with torch.autocast('cuda', enabled=args.fp16):
|
|
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
|
|
|
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="mean")
|
|
|
|
# backprop and update
|
|
scaler.scale(loss).backward()
|
|
torch.nn.utils.clip_grad_norm_(unet.parameters(), 1.0)
|
|
torch.nn.utils.clip_grad_norm_(text_encoder.parameters(), 1.0)
|
|
scaler.step(optimizer)
|
|
scaler.update()
|
|
lr_scheduler.step()
|
|
optimizer.zero_grad()
|
|
|
|
# Update EMA
|
|
if args.use_ema:
|
|
ema_unet.step(unet.parameters())
|
|
|
|
# perf
|
|
b_end = time.perf_counter()
|
|
seconds_per_step = b_end - b_start
|
|
steps_per_second = 1 / seconds_per_step
|
|
rank_images_per_second = args.batch_size * steps_per_second
|
|
world_images_per_second = rank_images_per_second * world_size
|
|
samples_seen = global_step * args.batch_size * world_size
|
|
|
|
# get global loss for logging
|
|
torch.distributed.all_reduce(loss, op=torch.distributed.ReduceOp.SUM)
|
|
loss = loss / world_size
|
|
|
|
if rank == 0:
|
|
progress_bar.update(1)
|
|
global_step += 1
|
|
logs = {
|
|
"train/loss": loss.detach().item(),
|
|
"train/lr": lr_scheduler.get_last_lr()[0],
|
|
"train/epoch": epoch,
|
|
"train/step": global_step,
|
|
"train/samples_seen": samples_seen,
|
|
"perf/rank_samples_per_second": rank_images_per_second,
|
|
"perf/global_samples_per_second": world_images_per_second,
|
|
}
|
|
progress_bar.set_postfix(logs)
|
|
run.log(logs, step=global_step)
|
|
|
|
if global_step % args.save_steps == 0 and global_step > 0:
|
|
save_checkpoint(global_step)
|
|
if args.enableinference:
|
|
if global_step % args.image_log_steps == 0 and global_step > 0:
|
|
if rank == 0:
|
|
# get prompt from random batch
|
|
prompt = tokenizer.decode(batch['tokens'][random.randint(0, len(batch['tokens'])-1)])
|
|
|
|
if args.image_log_scheduler == 'DDIMScheduler':
|
|
print('using DDIMScheduler scheduler')
|
|
scheduler = DDIMScheduler.from_pretrained(args.model, subfolder="scheduler", use_auth_token=args.hf_token)
|
|
else:
|
|
print('using PNDMScheduler scheduler')
|
|
scheduler=PNDMScheduler.from_pretrained(args.model, subfolder="scheduler", use_auth_token=args.hf_token)
|
|
|
|
pipeline = StableDiffusionPipeline(
|
|
text_encoder=text_encoder if type(text_encoder) is not torch.nn.parallel.DistributedDataParallel else text_encoder.module,
|
|
vae=vae,
|
|
unet=unet.module,
|
|
tokenizer=tokenizer,
|
|
scheduler=scheduler,
|
|
safety_checker=None, # disable safety checker to save memory
|
|
feature_extractor=CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32"),
|
|
).to(device)
|
|
# inference
|
|
if args.enablewandb:
|
|
images = []
|
|
else:
|
|
saveInferencePath = args.output_path + "/inference"
|
|
os.makedirs(saveInferencePath, exist_ok=True)
|
|
with torch.no_grad():
|
|
with torch.autocast('cuda', enabled=args.fp16):
|
|
for _ in range(args.image_log_amount):
|
|
if args.enablewandb:
|
|
images.append(
|
|
wandb.Image(pipeline(
|
|
prompt, num_inference_steps=args.image_log_inference_steps
|
|
).images[0],
|
|
caption=prompt)
|
|
)
|
|
else:
|
|
from datetime import datetime
|
|
images = pipeline(prompt, num_inference_steps=args.image_log_inference_steps).images[0]
|
|
filenameImg = str(time.time_ns()) + ".png"
|
|
filenameTxt = str(time.time_ns()) + ".txt"
|
|
images.save(saveInferencePath + "/" + filenameImg)
|
|
with open(saveInferencePath + "/" + filenameTxt, 'a') as f:
|
|
f.write('Used prompt: ' + prompt + '\n')
|
|
f.write('Generated Image Filename: ' + filenameImg + '\n')
|
|
f.write('Generated at: ' + str(global_step) + ' steps' + '\n')
|
|
f.write('Generated at: ' + str(datetime.now().strftime('%Y-%m-%d %H:%M:%S'))+ '\n')
|
|
|
|
# log images under single caption
|
|
if args.enablewandb:
|
|
run.log({'images': images}, step=global_step)
|
|
|
|
# cleanup so we don't run out of memory
|
|
del pipeline
|
|
gc.collect()
|
|
except Exception as e:
|
|
print(f'Exception caught on rank {rank} at step {global_step}, saving checkpoint...\n{e}\n{traceback.format_exc()}')
|
|
pass
|
|
|
|
save_checkpoint(global_step)
|
|
|
|
cleanup()
|
|
|
|
print(get_gpu_ram())
|
|
print('Done!')
|
|
|
|
if __name__ == "__main__":
|
|
setup()
|
|
main()
|