waifu-diffusion/ldm/models/diffusion/classifier.py

268 lines
10 KiB
Python

import os
import torch
import pytorch_lightning as pl
from omegaconf import OmegaConf
from torch.nn import functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from copy import deepcopy
from einops import rearrange
from glob import glob
from natsort import natsorted
from ldm.modules.diffusionmodules.openaimodel import EncoderUNetModel, UNetModel
from ldm.util import log_txt_as_img, default, ismap, instantiate_from_config
__models__ = {
'class_label': EncoderUNetModel,
'segmentation': UNetModel
}
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
class NoisyLatentImageClassifier(pl.LightningModule):
def __init__(self,
diffusion_path,
num_classes,
ckpt_path=None,
pool='attention',
label_key=None,
diffusion_ckpt_path=None,
scheduler_config=None,
weight_decay=1.e-2,
log_steps=10,
monitor='val/loss',
*args,
**kwargs):
super().__init__(*args, **kwargs)
self.num_classes = num_classes
# get latest config of diffusion model
diffusion_config = natsorted(glob(os.path.join(diffusion_path, 'configs', '*-project.yaml')))[-1]
self.diffusion_config = OmegaConf.load(diffusion_config).model
self.diffusion_config.params.ckpt_path = diffusion_ckpt_path
self.load_diffusion()
self.monitor = monitor
self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1
self.log_time_interval = self.diffusion_model.num_timesteps // log_steps
self.log_steps = log_steps
self.label_key = label_key if not hasattr(self.diffusion_model, 'cond_stage_key') \
else self.diffusion_model.cond_stage_key
assert self.label_key is not None, 'label_key neither in diffusion model nor in model.params'
if self.label_key not in __models__:
raise NotImplementedError()
self.load_classifier(ckpt_path, pool)
self.scheduler_config = scheduler_config
self.use_scheduler = self.scheduler_config is not None
self.weight_decay = weight_decay
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
sd = torch.load(path, map_location="cpu")
if "state_dict" in list(sd.keys()):
sd = sd["state_dict"]
keys = list(sd.keys())
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del sd[k]
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
sd, strict=False)
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
if len(missing) > 0:
print(f"Missing Keys: {missing}")
if len(unexpected) > 0:
print(f"Unexpected Keys: {unexpected}")
def load_diffusion(self):
model = instantiate_from_config(self.diffusion_config)
self.diffusion_model = model.eval()
self.diffusion_model.train = disabled_train
for param in self.diffusion_model.parameters():
param.requires_grad = False
def load_classifier(self, ckpt_path, pool):
model_config = deepcopy(self.diffusion_config.params.unet_config.params)
model_config.in_channels = self.diffusion_config.params.unet_config.params.out_channels
model_config.out_channels = self.num_classes
if self.label_key == 'class_label':
model_config.pool = pool
self.model = __models__[self.label_key](**model_config)
if ckpt_path is not None:
print('#####################################################################')
print(f'load from ckpt "{ckpt_path}"')
print('#####################################################################')
self.init_from_ckpt(ckpt_path)
@torch.no_grad()
def get_x_noisy(self, x, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x))
continuous_sqrt_alpha_cumprod = None
if self.diffusion_model.use_continuous_noise:
continuous_sqrt_alpha_cumprod = self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1)
# todo: make sure t+1 is correct here
return self.diffusion_model.q_sample(x_start=x, t=t, noise=noise,
continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod)
def forward(self, x_noisy, t, *args, **kwargs):
return self.model(x_noisy, t)
@torch.no_grad()
def get_input(self, batch, k):
x = batch[k]
if len(x.shape) == 3:
x = x[..., None]
x = rearrange(x, 'b h w c -> b c h w')
x = x.to(memory_format=torch.contiguous_format).float()
return x
@torch.no_grad()
def get_conditioning(self, batch, k=None):
if k is None:
k = self.label_key
assert k is not None, 'Needs to provide label key'
targets = batch[k].to(self.device)
if self.label_key == 'segmentation':
targets = rearrange(targets, 'b h w c -> b c h w')
for down in range(self.numd):
h, w = targets.shape[-2:]
targets = F.interpolate(targets, size=(h // 2, w // 2), mode='nearest')
# targets = rearrange(targets,'b c h w -> b h w c')
return targets
def compute_top_k(self, logits, labels, k, reduction="mean"):
_, top_ks = torch.topk(logits, k, dim=1)
if reduction == "mean":
return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item()
elif reduction == "none":
return (top_ks == labels[:, None]).float().sum(dim=-1)
def on_train_epoch_start(self):
# save some memory
self.diffusion_model.model.to('cpu')
@torch.no_grad()
def write_logs(self, loss, logits, targets):
log_prefix = 'train' if self.training else 'val'
log = {}
log[f"{log_prefix}/loss"] = loss.mean()
log[f"{log_prefix}/acc@1"] = self.compute_top_k(
logits, targets, k=1, reduction="mean"
)
log[f"{log_prefix}/acc@5"] = self.compute_top_k(
logits, targets, k=5, reduction="mean"
)
self.log_dict(log, prog_bar=False, logger=True, on_step=self.training, on_epoch=True)
self.log('loss', log[f"{log_prefix}/loss"], prog_bar=True, logger=False)
self.log('global_step', self.global_step, logger=False, on_epoch=False, prog_bar=True)
lr = self.optimizers().param_groups[0]['lr']
self.log('lr_abs', lr, on_step=True, logger=True, on_epoch=False, prog_bar=True)
def shared_step(self, batch, t=None):
x, *_ = self.diffusion_model.get_input(batch, k=self.diffusion_model.first_stage_key)
targets = self.get_conditioning(batch)
if targets.dim() == 4:
targets = targets.argmax(dim=1)
if t is None:
t = torch.randint(0, self.diffusion_model.num_timesteps, (x.shape[0],), device=self.device).long()
else:
t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long()
x_noisy = self.get_x_noisy(x, t)
logits = self(x_noisy, t)
loss = F.cross_entropy(logits, targets, reduction='none')
self.write_logs(loss.detach(), logits.detach(), targets.detach())
loss = loss.mean()
return loss, logits, x_noisy, targets
def training_step(self, batch, batch_idx):
loss, *_ = self.shared_step(batch)
return loss
def reset_noise_accs(self):
self.noisy_acc = {t: {'acc@1': [], 'acc@5': []} for t in
range(0, self.diffusion_model.num_timesteps, self.diffusion_model.log_every_t)}
def on_validation_start(self):
self.reset_noise_accs()
@torch.no_grad()
def validation_step(self, batch, batch_idx):
loss, *_ = self.shared_step(batch)
for t in self.noisy_acc:
_, logits, _, targets = self.shared_step(batch, t)
self.noisy_acc[t]['acc@1'].append(self.compute_top_k(logits, targets, k=1, reduction='mean'))
self.noisy_acc[t]['acc@5'].append(self.compute_top_k(logits, targets, k=5, reduction='mean'))
return loss
def configure_optimizers(self):
optimizer = AdamW(self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay)
if self.use_scheduler:
scheduler = instantiate_from_config(self.scheduler_config)
print("Setting up LambdaLR scheduler...")
scheduler = [
{
'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule),
'interval': 'step',
'frequency': 1
}]
return [optimizer], scheduler
return optimizer
@torch.no_grad()
def log_images(self, batch, N=8, *args, **kwargs):
log = dict()
x = self.get_input(batch, self.diffusion_model.first_stage_key)
log['inputs'] = x
y = self.get_conditioning(batch)
if self.label_key == 'class_label':
y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
log['labels'] = y
if ismap(y):
log['labels'] = self.diffusion_model.to_rgb(y)
for step in range(self.log_steps):
current_time = step * self.log_time_interval
_, logits, x_noisy, _ = self.shared_step(batch, t=current_time)
log[f'inputs@t{current_time}'] = x_noisy
pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes)
pred = rearrange(pred, 'b h w c -> b c h w')
log[f'pred@t{current_time}'] = self.diffusion_model.to_rgb(pred)
for key in log:
log[key] = log[key][:N]
return log