wownero/tests/unit_tests/serialization.cpp

1177 lines
47 KiB
C++
Raw Normal View History

// Copyright (c) 2014-2017, The Monero Project
2014-07-23 07:03:52 -06:00
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
2014-03-03 15:07:58 -07:00
#include <cstring>
#include <cstdint>
#include <cstdio>
#include <iostream>
#include <vector>
#include <boost/foreach.hpp>
2017-01-01 18:43:20 -07:00
#include <boost/archive/portable_binary_iarchive.hpp>
#include "cryptonote_basic/cryptonote_basic.h"
#include "cryptonote_basic/cryptonote_basic_impl.h"
#include "ringct/rctSigs.h"
2014-03-03 15:07:58 -07:00
#include "serialization/serialization.h"
#include "serialization/binary_archive.h"
#include "serialization/json_archive.h"
#include "serialization/debug_archive.h"
#include "serialization/variant.h"
#include "serialization/vector.h"
#include "serialization/binary_utils.h"
2017-01-01 18:43:20 -07:00
#include "wallet/wallet2.h"
2014-03-03 15:07:58 -07:00
#include "gtest/gtest.h"
#include "unit_tests_utils.h"
2014-03-03 15:07:58 -07:00
using namespace std;
using namespace crypto;
2014-03-03 15:07:58 -07:00
struct Struct
{
int32_t a;
int32_t b;
char blob[8];
};
template <class Archive>
struct serializer<Archive, Struct>
{
static bool serialize(Archive &ar, Struct &s) {
ar.begin_object();
ar.tag("a");
ar.serialize_int(s.a);
ar.tag("b");
ar.serialize_int(s.b);
ar.tag("blob");
ar.serialize_blob(s.blob, sizeof(s.blob));
ar.end_object();
return true;
}
};
struct Struct1
{
vector<boost::variant<Struct, int32_t>> si;
vector<int16_t> vi;
BEGIN_SERIALIZE_OBJECT()
FIELD(si)
FIELD(vi)
END_SERIALIZE()
/*template <bool W, template <bool> class Archive>
bool do_serialize(Archive<W> &ar)
{
ar.begin_object();
ar.tag("si");
::do_serialize(ar, si);
ar.tag("vi");
::do_serialize(ar, vi);
ar.end_object();
}*/
};
struct Blob
{
uint64_t a;
uint32_t b;
bool operator==(const Blob& rhs) const
{
return a == rhs.a;
}
};
VARIANT_TAG(binary_archive, Struct, 0xe0);
VARIANT_TAG(binary_archive, int, 0xe1);
VARIANT_TAG(json_archive, Struct, "struct");
VARIANT_TAG(json_archive, int, "int");
VARIANT_TAG(debug_archive, Struct1, "struct1");
VARIANT_TAG(debug_archive, Struct, "struct");
VARIANT_TAG(debug_archive, int, "int");
BLOB_SERIALIZER(Blob);
bool try_parse(const string &blob)
{
Struct1 s1;
return serialization::parse_binary(blob, s1);
}
TEST(Serialization, BinaryArchiveInts) {
uint64_t x = 0xff00000000, x1;
ostringstream oss;
binary_archive<true> oar(oss);
oar.serialize_int(x);
ASSERT_TRUE(oss.good());
ASSERT_EQ(8, oss.str().size());
ASSERT_EQ(string("\0\0\0\0\xff\0\0\0", 8), oss.str());
istringstream iss(oss.str());
binary_archive<false> iar(iss);
iar.serialize_int(x1);
ASSERT_EQ(8, iss.tellg());
ASSERT_TRUE(iss.good());
ASSERT_EQ(x, x1);
}
TEST(Serialization, BinaryArchiveVarInts) {
uint64_t x = 0xff00000000, x1;
ostringstream oss;
binary_archive<true> oar(oss);
oar.serialize_varint(x);
ASSERT_TRUE(oss.good());
ASSERT_EQ(6, oss.str().size());
ASSERT_EQ(string("\x80\x80\x80\x80\xF0\x1F", 6), oss.str());
istringstream iss(oss.str());
binary_archive<false> iar(iss);
iar.serialize_varint(x1);
ASSERT_TRUE(iss.good());
ASSERT_EQ(x, x1);
}
TEST(Serialization, Test1) {
ostringstream str;
binary_archive<true> ar(str);
Struct1 s1;
s1.si.push_back(0);
{
Struct s;
s.a = 5;
s.b = 65539;
std::memcpy(s.blob, "12345678", 8);
s1.si.push_back(s);
}
s1.si.push_back(1);
s1.vi.push_back(10);
s1.vi.push_back(22);
string blob;
ASSERT_TRUE(serialization::dump_binary(s1, blob));
ASSERT_TRUE(try_parse(blob));
ASSERT_EQ('\xE0', blob[6]);
blob[6] = '\xE1';
ASSERT_FALSE(try_parse(blob));
blob[6] = '\xE2';
ASSERT_FALSE(try_parse(blob));
}
TEST(Serialization, Overflow) {
Blob x = { 0xff00000000 };
Blob x1;
string blob;
ASSERT_TRUE(serialization::dump_binary(x, blob));
ASSERT_EQ(sizeof(Blob), blob.size());
ASSERT_TRUE(serialization::parse_binary(blob, x1));
ASSERT_EQ(x, x1);
vector<Blob> bigvector;
ASSERT_FALSE(serialization::parse_binary(blob, bigvector));
ASSERT_EQ(0, bigvector.size());
}
TEST(Serialization, serializes_vector_uint64_as_varint)
{
std::vector<uint64_t> v;
string blob;
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(1, blob.size());
// +1 byte
v.push_back(0);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(2, blob.size());
// +1 byte
v.push_back(1);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(3, blob.size());
// +2 bytes
v.push_back(0x80);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(5, blob.size());
// +2 bytes
v.push_back(0xFF);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(7, blob.size());
// +2 bytes
v.push_back(0x3FFF);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(9, blob.size());
// +3 bytes
v.push_back(0x40FF);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(12, blob.size());
// +10 bytes
v.push_back(0xFFFFFFFFFFFFFFFF);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(22, blob.size());
}
TEST(Serialization, serializes_vector_int64_as_fixed_int)
{
std::vector<int64_t> v;
string blob;
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(1, blob.size());
// +8 bytes
v.push_back(0);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(9, blob.size());
// +8 bytes
v.push_back(1);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(17, blob.size());
// +8 bytes
v.push_back(0x80);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(25, blob.size());
// +8 bytes
v.push_back(0xFF);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(33, blob.size());
// +8 bytes
v.push_back(0x3FFF);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(41, blob.size());
// +8 bytes
v.push_back(0x40FF);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(49, blob.size());
// +8 bytes
v.push_back(0xFFFFFFFFFFFFFFFF);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(57, blob.size());
}
namespace
{
template<typename T>
std::vector<T> linearize_vector2(const std::vector< std::vector<T> >& vec_vec)
{
std::vector<T> res;
BOOST_FOREACH(const auto& vec, vec_vec)
{
res.insert(res.end(), vec.begin(), vec.end());
}
return res;
}
}
TEST(Serialization, serializes_transacion_signatures_correctly)
{
using namespace cryptonote;
transaction tx;
transaction tx1;
string blob;
// Empty tx
tx.set_null();
ASSERT_TRUE(serialization::dump_binary(tx, blob));
ASSERT_EQ(5, blob.size()); // 5 bytes + 0 bytes extra + 0 bytes signatures
ASSERT_TRUE(serialization::parse_binary(blob, tx1));
ASSERT_EQ(tx, tx1);
ASSERT_EQ(linearize_vector2(tx.signatures), linearize_vector2(tx1.signatures));
// Miner tx without signatures
txin_gen txin_gen1;
txin_gen1.height = 0;
tx.set_null();
tx.vin.push_back(txin_gen1);
ASSERT_TRUE(serialization::dump_binary(tx, blob));
ASSERT_EQ(7, blob.size()); // 5 bytes + 2 bytes vin[0] + 0 bytes extra + 0 bytes signatures
ASSERT_TRUE(serialization::parse_binary(blob, tx1));
ASSERT_EQ(tx, tx1);
ASSERT_EQ(linearize_vector2(tx.signatures), linearize_vector2(tx1.signatures));
// Miner tx with empty signatures 2nd vector
tx.signatures.resize(1);
tx.invalidate_hashes();
2014-03-03 15:07:58 -07:00
ASSERT_TRUE(serialization::dump_binary(tx, blob));
ASSERT_EQ(7, blob.size()); // 5 bytes + 2 bytes vin[0] + 0 bytes extra + 0 bytes signatures
ASSERT_TRUE(serialization::parse_binary(blob, tx1));
ASSERT_EQ(tx, tx1);
ASSERT_EQ(linearize_vector2(tx.signatures), linearize_vector2(tx1.signatures));
// Miner tx with one signature
tx.signatures[0].resize(1);
ASSERT_FALSE(serialization::dump_binary(tx, blob));
// Miner tx with 2 empty vectors
tx.signatures.resize(2);
tx.signatures[0].resize(0);
tx.signatures[1].resize(0);
tx.invalidate_hashes();
2014-03-03 15:07:58 -07:00
ASSERT_FALSE(serialization::dump_binary(tx, blob));
// Miner tx with 2 signatures
tx.signatures[0].resize(1);
tx.signatures[1].resize(1);
tx.invalidate_hashes();
2014-03-03 15:07:58 -07:00
ASSERT_FALSE(serialization::dump_binary(tx, blob));
// Two txin_gen, no signatures
tx.vin.push_back(txin_gen1);
tx.signatures.resize(0);
tx.invalidate_hashes();
2014-03-03 15:07:58 -07:00
ASSERT_TRUE(serialization::dump_binary(tx, blob));
ASSERT_EQ(9, blob.size()); // 5 bytes + 2 * 2 bytes vins + 0 bytes extra + 0 bytes signatures
ASSERT_TRUE(serialization::parse_binary(blob, tx1));
ASSERT_EQ(tx, tx1);
ASSERT_EQ(linearize_vector2(tx.signatures), linearize_vector2(tx1.signatures));
// Two txin_gen, signatures vector contains only one empty element
tx.signatures.resize(1);
tx.invalidate_hashes();
2014-03-03 15:07:58 -07:00
ASSERT_FALSE(serialization::dump_binary(tx, blob));
// Two txin_gen, signatures vector contains two empty elements
tx.signatures.resize(2);
tx.invalidate_hashes();
2014-03-03 15:07:58 -07:00
ASSERT_TRUE(serialization::dump_binary(tx, blob));
ASSERT_EQ(9, blob.size()); // 5 bytes + 2 * 2 bytes vins + 0 bytes extra + 0 bytes signatures
ASSERT_TRUE(serialization::parse_binary(blob, tx1));
ASSERT_EQ(tx, tx1);
ASSERT_EQ(linearize_vector2(tx.signatures), linearize_vector2(tx1.signatures));
// Two txin_gen, signatures vector contains three empty elements
tx.signatures.resize(3);
tx.invalidate_hashes();
2014-03-03 15:07:58 -07:00
ASSERT_FALSE(serialization::dump_binary(tx, blob));
// Two txin_gen, signatures vector contains two non empty elements
tx.signatures.resize(2);
tx.signatures[0].resize(1);
tx.signatures[1].resize(1);
tx.invalidate_hashes();
2014-03-03 15:07:58 -07:00
ASSERT_FALSE(serialization::dump_binary(tx, blob));
// A few bytes instead of signature
tx.vin.clear();
tx.vin.push_back(txin_gen1);
tx.signatures.clear();
tx.invalidate_hashes();
2014-03-03 15:07:58 -07:00
ASSERT_TRUE(serialization::dump_binary(tx, blob));
blob.append(std::string(sizeof(crypto::signature) / 2, 'x'));
ASSERT_FALSE(serialization::parse_binary(blob, tx1));
// blob contains one signature
blob.append(std::string(sizeof(crypto::signature) / 2, 'y'));
ASSERT_FALSE(serialization::parse_binary(blob, tx1));
// Not enough signature vectors for all inputs
txin_to_key txin_to_key1;
txin_to_key1.amount = 1;
memset(&txin_to_key1.k_image, 0x42, sizeof(crypto::key_image));
txin_to_key1.key_offsets.push_back(12);
txin_to_key1.key_offsets.push_back(3453);
2014-03-03 15:07:58 -07:00
tx.vin.clear();
tx.vin.push_back(txin_to_key1);
tx.vin.push_back(txin_to_key1);
tx.signatures.resize(1);
tx.signatures[0].resize(2);
tx.invalidate_hashes();
2014-03-03 15:07:58 -07:00
ASSERT_FALSE(serialization::dump_binary(tx, blob));
// Too much signatures for two inputs
tx.signatures.resize(3);
tx.signatures[0].resize(2);
tx.signatures[1].resize(2);
tx.signatures[2].resize(2);
tx.invalidate_hashes();
2014-03-03 15:07:58 -07:00
ASSERT_FALSE(serialization::dump_binary(tx, blob));
// First signatures vector contains too little elements
tx.signatures.resize(2);
tx.signatures[0].resize(1);
tx.signatures[1].resize(2);
tx.invalidate_hashes();
2014-03-03 15:07:58 -07:00
ASSERT_FALSE(serialization::dump_binary(tx, blob));
// First signatures vector contains too much elements
tx.signatures.resize(2);
tx.signatures[0].resize(3);
tx.signatures[1].resize(2);
tx.invalidate_hashes();
2014-03-03 15:07:58 -07:00
ASSERT_FALSE(serialization::dump_binary(tx, blob));
// There are signatures for each input
tx.signatures.resize(2);
tx.signatures[0].resize(2);
tx.signatures[1].resize(2);
tx.invalidate_hashes();
2014-03-03 15:07:58 -07:00
ASSERT_TRUE(serialization::dump_binary(tx, blob));
ASSERT_TRUE(serialization::parse_binary(blob, tx1));
ASSERT_EQ(tx, tx1);
ASSERT_EQ(linearize_vector2(tx.signatures), linearize_vector2(tx1.signatures));
// Blob doesn't contain enough data
blob.resize(blob.size() - sizeof(crypto::signature) / 2);
ASSERT_FALSE(serialization::parse_binary(blob, tx1));
// Blob contains too much data
blob.resize(blob.size() + sizeof(crypto::signature));
ASSERT_FALSE(serialization::parse_binary(blob, tx1));
// Blob contains one excess signature
blob.resize(blob.size() + sizeof(crypto::signature) / 2);
ASSERT_FALSE(serialization::parse_binary(blob, tx1));
}
TEST(Serialization, serializes_ringct_types)
{
string blob;
rct::key key0, key1;
rct::keyV keyv0, keyv1;
rct::keyM keym0, keym1;
rct::ctkey ctkey0, ctkey1;
rct::ctkeyV ctkeyv0, ctkeyv1;
rct::ctkeyM ctkeym0, ctkeym1;
rct::ecdhTuple ecdh0, ecdh1;
2016-11-17 16:17:21 -07:00
rct::boroSig boro0, boro1;
rct::mgSig mg0, mg1;
rct::rangeSig rg0, rg1;
rct::rctSig s0, s1;
cryptonote::transaction tx0, tx1;
key0 = rct::skGen();
ASSERT_TRUE(serialization::dump_binary(key0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, key1));
ASSERT_TRUE(key0 == key1);
keyv0 = rct::skvGen(30);
for (size_t n = 0; n < keyv0.size(); ++n)
keyv0[n] = rct::skGen();
ASSERT_TRUE(serialization::dump_binary(keyv0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, keyv1));
ASSERT_TRUE(keyv0.size() == keyv1.size());
for (size_t n = 0; n < keyv0.size(); ++n)
{
ASSERT_TRUE(keyv0[n] == keyv1[n]);
}
keym0 = rct::keyMInit(9, 12);
for (size_t n = 0; n < keym0.size(); ++n)
for (size_t i = 0; i < keym0[n].size(); ++i)
keym0[n][i] = rct::skGen();
ASSERT_TRUE(serialization::dump_binary(keym0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, keym1));
ASSERT_TRUE(keym0.size() == keym1.size());
for (size_t n = 0; n < keym0.size(); ++n)
{
ASSERT_TRUE(keym0[n].size() == keym1[n].size());
for (size_t i = 0; i < keym0[n].size(); ++i)
{
ASSERT_TRUE(keym0[n][i] == keym1[n][i]);
}
}
rct::skpkGen(ctkey0.dest, ctkey0.mask);
ASSERT_TRUE(serialization::dump_binary(ctkey0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, ctkey1));
ASSERT_TRUE(!memcmp(&ctkey0, &ctkey1, sizeof(ctkey0)));
ctkeyv0 = std::vector<rct::ctkey>(14);
for (size_t n = 0; n < ctkeyv0.size(); ++n)
rct::skpkGen(ctkeyv0[n].dest, ctkeyv0[n].mask);
ASSERT_TRUE(serialization::dump_binary(ctkeyv0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, ctkeyv1));
ASSERT_TRUE(ctkeyv0.size() == ctkeyv1.size());
for (size_t n = 0; n < ctkeyv0.size(); ++n)
{
ASSERT_TRUE(!memcmp(&ctkeyv0[n], &ctkeyv1[n], sizeof(ctkeyv0[n])));
}
ctkeym0 = std::vector<rct::ctkeyV>(9);
for (size_t n = 0; n < ctkeym0.size(); ++n)
{
ctkeym0[n] = std::vector<rct::ctkey>(11);
for (size_t i = 0; i < ctkeym0[n].size(); ++i)
rct::skpkGen(ctkeym0[n][i].dest, ctkeym0[n][i].mask);
}
ASSERT_TRUE(serialization::dump_binary(ctkeym0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, ctkeym1));
ASSERT_TRUE(ctkeym0.size() == ctkeym1.size());
for (size_t n = 0; n < ctkeym0.size(); ++n)
{
ASSERT_TRUE(ctkeym0[n].size() == ctkeym1[n].size());
for (size_t i = 0; i < ctkeym0.size(); ++i)
{
ASSERT_TRUE(!memcmp(&ctkeym0[n][i], &ctkeym1[n][i], sizeof(ctkeym0[n][i])));
}
}
ecdh0.mask = rct::skGen();
ecdh0.amount = rct::skGen();
ecdh0.senderPk = rct::skGen();
ASSERT_TRUE(serialization::dump_binary(ecdh0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, ecdh1));
ASSERT_TRUE(!memcmp(&ecdh0.mask, &ecdh1.mask, sizeof(ecdh0.mask)));
ASSERT_TRUE(!memcmp(&ecdh0.amount, &ecdh1.amount, sizeof(ecdh0.amount)));
// senderPk is not serialized
for (size_t n = 0; n < 64; ++n)
{
2016-11-17 16:17:21 -07:00
boro0.s0[n] = rct::skGen();
boro0.s1[n] = rct::skGen();
}
2016-11-17 16:17:21 -07:00
boro0.ee = rct::skGen();
ASSERT_TRUE(serialization::dump_binary(boro0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, boro1));
ASSERT_TRUE(!memcmp(&boro0, &boro1, sizeof(boro0)));
// create a full rct signature to use its innards
rct::ctkeyV sc, pc;
rct::ctkey sctmp, pctmp;
tie(sctmp, pctmp) = rct::ctskpkGen(6000);
sc.push_back(sctmp);
pc.push_back(pctmp);
tie(sctmp, pctmp) = rct::ctskpkGen(7000);
sc.push_back(sctmp);
pc.push_back(pctmp);
vector<uint64_t> amounts;
rct::keyV amount_keys;
//add output 500
amounts.push_back(500);
amount_keys.push_back(rct::hash_to_scalar(rct::zero()));
rct::keyV destinations;
rct::key Sk, Pk;
rct::skpkGen(Sk, Pk);
destinations.push_back(Pk);
//add output for 12500
amounts.push_back(12500);
amount_keys.push_back(rct::hash_to_scalar(rct::zero()));
rct::skpkGen(Sk, Pk);
destinations.push_back(Pk);
//compute rct data with mixin 500
Add N/N multisig tx generation and signing Scheme by luigi1111: Multisig for RingCT on Monero 2 of 2 User A (coordinator): Spendkey b,B Viewkey a,A (shared) User B: Spendkey c,C Viewkey a,A (shared) Public Address: C+B, A Both have their own watch only wallet via C+B, a A will coordinate spending process (though B could easily as well, coordinator is more needed for more participants) A and B watch for incoming outputs B creates "half" key images for discovered output D: I2_D = (Hs(aR)+c) * Hp(D) B also creates 1.5 random keypairs (one scalar and 2 pubkeys; one on base G and one on base Hp(D)) for each output, storing the scalar(k) (linked to D), and sending the pubkeys with I2_D. A also creates "half" key images: I1_D = (Hs(aR)+b) * Hp(D) Then I_D = I1_D + I2_D Having I_D allows A to check spent status of course, but more importantly allows A to actually build a transaction prefix (and thus transaction). A builds the transaction until most of the way through MLSAG_Gen, adding the 2 pubkeys (per input) provided with I2_D to his own generated ones where they are needed (secret row L, R). At this point, A has a mostly completed transaction (but with an invalid/incomplete signature). A sends over the tx and includes r, which allows B (with the recipient's address) to verify the destination and amount (by reconstructing the stealth address and decoding ecdhInfo). B then finishes the signature by computing ss[secret_index][0] = ss[secret_index][0] + k - cc[secret_index]*c (secret indices need to be passed as well). B can then broadcast the tx, or send it back to A for broadcasting. Once B has completed the signing (and verified the tx to be valid), he can add the full I_D to his cache, allowing him to verify spent status as well. NOTE: A and B *must* present key A and B to each other with a valid signature proving they know a and b respectively. Otherwise, trickery like the following becomes possible: A creates viewkey a,A, spendkey b,B, and sends a,A,B to B. B creates a fake key C = zG - B. B sends C back to A. The combined spendkey C+B then equals zG, allowing B to spend funds at any time! The signature fixes this, because B does not know a c corresponding to C (and thus can't produce a signature). 2 of 3 User A (coordinator) Shared viewkey a,A "spendkey" j,J User B "spendkey" k,K User C "spendkey" m,M A collects K and M from B and C B collects J and M from A and C C collects J and K from A and B A computes N = nG, n = Hs(jK) A computes O = oG, o = Hs(jM) B anc C compute P = pG, p = Hs(kM) || Hs(mK) B and C can also compute N and O respectively if they wish to be able to coordinate Address: N+O+P, A The rest follows as above. The coordinator possesses 2 of 3 needed keys; he can get the other needed part of the signature/key images from either of the other two. Alternatively, if secure communication exists between parties: A gives j to B B gives k to C C gives m to A Address: J+K+M, A 3 of 3 Identical to 2 of 2, except the coordinator must collect the key images from both of the others. The transaction must also be passed an additional hop: A -> B -> C (or A -> C -> B), who can then broadcast it or send it back to A. N-1 of N Generally the same as 2 of 3, except participants need to be arranged in a ring to pass their keys around (using either the secure or insecure method). For example (ignoring viewkey so letters line up): [4 of 5] User: spendkey A: a B: b C: c D: d E: e a -> B, b -> C, c -> D, d -> E, e -> A Order of signing does not matter, it just must reach n-1 users. A "remaining keys" list must be passed around with the transaction so the signers know if they should use 1 or both keys. Collecting key image parts becomes a little messy, but basically every wallet sends over both of their parts with a tag for each. Thia way the coordinating wallet can keep track of which images have been added and which wallet they come from. Reasoning: 1. The key images must be added only once (coordinator will get key images for key a from both A and B, he must add only one to get the proper key actual key image) 2. The coordinator must keep track of which helper pubkeys came from which wallet (discussed in 2 of 2 section). The coordinator must choose only one set to use, then include his choice in the "remaining keys" list so the other wallets know which of their keys to use. You can generalize it further to N-2 of N or even M of N, but I'm not sure there's legitimate demand to justify the complexity. It might also be straightforward enough to support with minimal changes from N-1 format. You basically just give each user additional keys for each additional "-1" you desire. N-2 would be 3 keys per user, N-3 4 keys, etc. The process is somewhat cumbersome: To create a N/N multisig wallet: - each participant creates a normal wallet - each participant runs "prepare_multisig", and sends the resulting string to every other participant - each participant runs "make_multisig N A B C D...", with N being the threshold and A B C D... being the strings received from other participants (the threshold must currently equal N) As txes are received, participants' wallets will need to synchronize so that those new outputs may be spent: - each participant runs "export_multisig FILENAME", and sends the FILENAME file to every other participant - each participant runs "import_multisig A B C D...", with A B C D... being the filenames received from other participants Then, a transaction may be initiated: - one of the participants runs "transfer ADDRESS AMOUNT" - this partly signed transaction will be written to the "multisig_monero_tx" file - the initiator sends this file to another participant - that other participant runs "sign_multisig multisig_monero_tx" - the resulting transaction is written to the "multisig_monero_tx" file again - if the threshold was not reached, the file must be sent to another participant, until enough have signed - the last participant to sign runs "submit_multisig multisig_monero_tx" to relay the transaction to the Monero network
2017-06-03 15:34:26 -06:00
s0 = rct::genRct(rct::zero(), sc, pc, destinations, amounts, amount_keys, NULL, NULL, 3);
mg0 = s0.p.MGs[0];
ASSERT_TRUE(serialization::dump_binary(mg0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, mg1));
ASSERT_TRUE(mg0.ss.size() == mg1.ss.size());
for (size_t n = 0; n < mg0.ss.size(); ++n)
{
ASSERT_TRUE(mg0.ss[n] == mg1.ss[n]);
}
ASSERT_TRUE(mg0.cc == mg1.cc);
// mixRing and II are not serialized, they are meant to be reconstructed
ASSERT_TRUE(mg1.II.empty());
rg0 = s0.p.rangeSigs.front();
ASSERT_TRUE(serialization::dump_binary(rg0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, rg1));
ASSERT_TRUE(!memcmp(&rg0, &rg1, sizeof(rg0)));
#if 0
ASSERT_TRUE(serialization::dump_binary(s0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, s1));
ASSERT_TRUE(s0.type == s1.type);
ASSERT_TRUE(s0.p.rangeSigs.size() == s1.p.rangeSigs.size());
for (size_t n = 0; n < s0.p.rangeSigs.size(); ++n)
{
ASSERT_TRUE(!memcmp(&s0.p.rangeSigs[n], &s1.p.rangeSigs[n], sizeof(s0.p.rangeSigs[n])));
}
ASSERT_TRUE(s0.p.MGs.size() == s1.p.MGs.size());
ASSERT_TRUE(s0.p.MGs[0].ss.size() == s1.p.MGs[0].ss.size());
for (size_t n = 0; n < s0.p.MGs[0].ss.size(); ++n)
{
ASSERT_TRUE(s0.p.MGs[0].ss[n] == s1.p.MGs[0].ss[n]);
}
ASSERT_TRUE(s0.p.MGs[0].cc == s1.p.MGs[0].cc);
// mixRing and II are not serialized, they are meant to be reconstructed
ASSERT_TRUE(s1.p.MGs[0].II.empty());
// mixRing and II are not serialized, they are meant to be reconstructed
ASSERT_TRUE(s1.mixRing.size() == 0);
ASSERT_TRUE(s0.ecdhInfo.size() == s1.ecdhInfo.size());
for (size_t n = 0; n < s0.ecdhInfo.size(); ++n)
{
ASSERT_TRUE(!memcmp(&s0.ecdhInfo[n], &s1.ecdhInfo[n], sizeof(s0.ecdhInfo[n])));
}
ASSERT_TRUE(s0.outPk.size() == s1.outPk.size());
for (size_t n = 0; n < s0.outPk.size(); ++n)
{
// serialization only does the mask
ASSERT_TRUE(!memcmp(&s0.outPk[n].mask, &s1.outPk[n].mask, sizeof(s0.outPk[n].mask)));
}
#endif
tx0.set_null();
tx0.version = 2;
cryptonote::txin_to_key txin_to_key1{};
txin_to_key1.amount = 100;
txin_to_key1.key_offsets.resize(4);
cryptonote::txin_to_key txin_to_key2{};
txin_to_key2.amount = 200;
txin_to_key2.key_offsets.resize(4);
tx0.vin.push_back(txin_to_key1);
tx0.vin.push_back(txin_to_key2);
tx0.vout.push_back(cryptonote::tx_out());
tx0.vout.push_back(cryptonote::tx_out());
tx0.rct_signatures = s0;
ASSERT_EQ(tx0.rct_signatures.p.rangeSigs.size(), 2);
ASSERT_TRUE(serialization::dump_binary(tx0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, tx1));
ASSERT_EQ(tx1.rct_signatures.p.rangeSigs.size(), 2);
std::string blob2;
ASSERT_TRUE(serialization::dump_binary(tx1, blob2));
ASSERT_TRUE(blob == blob2);
}
2017-01-01 18:43:20 -07:00
TEST(Serialization, portability_wallet)
{
const bool testnet = true;
const bool restricted = false;
tools::wallet2 w(testnet, restricted);
const boost::filesystem::path wallet_file = unit_test::data_dir / "wallet_9svHk1";
2017-01-01 18:43:20 -07:00
string password = "test";
bool r = false;
try
{
2017-10-08 15:59:08 -06:00
w.load(wallet_file.string(), password);
2017-01-01 18:43:20 -07:00
r = true;
}
catch (const exception& e)
{}
ASSERT_TRUE(r);
/*
fields of tools::wallet2 to be checked:
std::vector<crypto::hash> m_blockchain
std::vector<transfer_details> m_transfers // TODO
cryptonote::account_public_address m_account_public_address
std::unordered_map<crypto::key_image, size_t> m_key_images
std::unordered_map<crypto::hash, unconfirmed_transfer_details> m_unconfirmed_txs
std::unordered_multimap<crypto::hash, payment_details> m_payments
std::unordered_map<crypto::hash, crypto::secret_key> m_tx_keys
std::unordered_map<crypto::hash, confirmed_transfer_details> m_confirmed_txs
std::unordered_map<crypto::hash, std::string> m_tx_notes
std::unordered_map<crypto::hash, payment_details> m_unconfirmed_payments
std::unordered_map<crypto::public_key, size_t> m_pub_keys
std::vector<tools::wallet2::address_book_row> m_address_book
*/
// blockchain
ASSERT_TRUE(w.m_blockchain.size() == 1);
ASSERT_TRUE(epee::string_tools::pod_to_hex(w.m_blockchain[0]) == "48ca7cd3c8de5b6a4d53d2861fbdaedca141553559f9be9520068053cda8430b");
// transfers (TODO)
ASSERT_TRUE(w.m_transfers.size() == 3);
// account public address
ASSERT_TRUE(epee::string_tools::pod_to_hex(w.m_account_public_address.m_view_public_key) == "e47d4b6df6ab7339539148c2a03ad3e2f3434e5ab2046848e1f21369a3937cad");
ASSERT_TRUE(epee::string_tools::pod_to_hex(w.m_account_public_address.m_spend_public_key) == "13daa2af00ad26a372d317195de0bdd716f7a05d33bc4d7aff1664b6ee93c060");
// key images
ASSERT_TRUE(w.m_key_images.size() == 3);
{
crypto::key_image ki[3];
epee::string_tools::hex_to_pod("c5680d3735b90871ca5e3d90cd82d6483eed1151b9ab75c2c8c3a7d89e00a5a8", ki[0]);
epee::string_tools::hex_to_pod("d54cbd435a8d636ad9b01b8d4f3eb13bd0cf1ce98eddf53ab1617f9b763e66c0", ki[1]);
epee::string_tools::hex_to_pod("6c3cd6af97c4070a7aef9b1344e7463e29c7cd245076fdb65da447a34da3ca76", ki[2]);
ASSERT_TRUE(w.m_key_images.find(ki[0])->second == 0);
ASSERT_TRUE(w.m_key_images.find(ki[1])->second == 1);
ASSERT_TRUE(w.m_key_images.find(ki[2])->second == 2);
}
// unconfirmed txs
ASSERT_TRUE(w.m_unconfirmed_txs.size() == 0);
// payments
ASSERT_TRUE(w.m_payments.size() == 2);
{
auto pd0 = w.m_payments.begin();
auto pd1 = pd0;
++pd1;
ASSERT_TRUE(epee::string_tools::pod_to_hex(pd0->first) == "0000000000000000000000000000000000000000000000000000000000000000");
ASSERT_TRUE(epee::string_tools::pod_to_hex(pd1->first) == "0000000000000000000000000000000000000000000000000000000000000000");
if (epee::string_tools::pod_to_hex(pd0->second.m_tx_hash) == "ec34c9bb12b99af33d49691384eee5bed9171498ff04e59516505f35d1fc5efc")
swap(pd0, pd1);
ASSERT_TRUE(epee::string_tools::pod_to_hex(pd0->second.m_tx_hash) == "15024343b38e77a1a9860dfed29921fa17e833fec837191a6b04fa7cb9605b8e");
ASSERT_TRUE(epee::string_tools::pod_to_hex(pd1->second.m_tx_hash) == "ec34c9bb12b99af33d49691384eee5bed9171498ff04e59516505f35d1fc5efc");
ASSERT_TRUE(pd0->second.m_amount == 13400845012231);
ASSERT_TRUE(pd1->second.m_amount == 1200000000000);
ASSERT_TRUE(pd0->second.m_block_height == 818424);
ASSERT_TRUE(pd1->second.m_block_height == 818522);
ASSERT_TRUE(pd0->second.m_unlock_time == 818484);
ASSERT_TRUE(pd1->second.m_unlock_time == 0);
ASSERT_TRUE(pd0->second.m_timestamp == 1483263366);
ASSERT_TRUE(pd1->second.m_timestamp == 1483272963);
}
// tx keys
ASSERT_TRUE(w.m_tx_keys.size() == 2);
{
auto tx_key0 = w.m_tx_keys.begin();
auto tx_key1 = tx_key0;
++tx_key1;
if (epee::string_tools::pod_to_hex(tx_key0->first) == "6e7013684d35820f66c6679197ded9329bfe0e495effa47e7b25258799858dba")
swap(tx_key0, tx_key1);
ASSERT_TRUE(epee::string_tools::pod_to_hex(tx_key0->first) == "b9aac8c020ab33859e0c0b6331f46a8780d349e7ac17b067116e2d87bf48daad");
ASSERT_TRUE(epee::string_tools::pod_to_hex(tx_key1->first) == "6e7013684d35820f66c6679197ded9329bfe0e495effa47e7b25258799858dba");
ASSERT_TRUE(epee::string_tools::pod_to_hex(tx_key0->second) == "bf3614c6de1d06c09add5d92a5265d8c76af706f7bc6ac830d6b0d109aa87701");
ASSERT_TRUE(epee::string_tools::pod_to_hex(tx_key1->second) == "e556884246df5a787def6732c6ea38f1e092fa13e5ea98f732b99c07a6332003");
}
// confirmed txs
ASSERT_TRUE(w.m_confirmed_txs.size() == 1);
// tx notes
ASSERT_TRUE(w.m_tx_notes.size() == 2);
{
crypto::hash h[2];
epee::string_tools::hex_to_pod("15024343b38e77a1a9860dfed29921fa17e833fec837191a6b04fa7cb9605b8e", h[0]);
epee::string_tools::hex_to_pod("6e7013684d35820f66c6679197ded9329bfe0e495effa47e7b25258799858dba", h[1]);
ASSERT_TRUE(w.m_tx_notes.find(h[0])->second == "sample note");
ASSERT_TRUE(w.m_tx_notes.find(h[1])->second == "sample note 2");
}
// unconfirmed payments
ASSERT_TRUE(w.m_unconfirmed_payments.size() == 0);
// pub keys
ASSERT_TRUE(w.m_pub_keys.size() == 3);
{
crypto::public_key pubkey[3];
epee::string_tools::hex_to_pod("33f75f264574cb3a9ea5b24220a5312e183d36dc321c9091dfbb720922a4f7b0", pubkey[0]);
epee::string_tools::hex_to_pod("5066ff2ce9861b1d131cf16eeaa01264933a49f28242b97b153e922ec7b4b3cb", pubkey[1]);
epee::string_tools::hex_to_pod("0d8467e16e73d16510452b78823e082e05ee3a63788d40de577cf31eb555f0c8", pubkey[2]);
ASSERT_TRUE(w.m_pub_keys.find(pubkey[0])->second == 0);
ASSERT_TRUE(w.m_pub_keys.find(pubkey[1])->second == 1);
ASSERT_TRUE(w.m_pub_keys.find(pubkey[2])->second == 2);
}
// address book
ASSERT_TRUE(w.m_address_book.size() == 1);
{
auto address_book_row = w.m_address_book.begin();
ASSERT_TRUE(epee::string_tools::pod_to_hex(address_book_row->m_address.m_spend_public_key) == "9bc53a6ff7b0831c9470f71b6b972dbe5ad1e8606f72682868b1dda64e119fb3");
ASSERT_TRUE(epee::string_tools::pod_to_hex(address_book_row->m_address.m_view_public_key) == "49fece1ef97dc0c0f7a5e2106e75e96edd910f7e86b56e1e308cd0cf734df191");
ASSERT_TRUE(epee::string_tools::pod_to_hex(address_book_row->m_payment_id) == "0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef");
ASSERT_TRUE(address_book_row->m_description == "testnet wallet 9y52S6");
}
}
#define OUTPUT_EXPORT_FILE_MAGIC "Monero output export\003"
TEST(Serialization, portability_outputs)
{
// read file
const boost::filesystem::path filename = unit_test::data_dir / "outputs";
2017-01-01 18:43:20 -07:00
std::string data;
2017-10-08 15:59:08 -06:00
bool r = epee::file_io_utils::load_file_to_string(filename.string(), data);
2017-01-01 18:43:20 -07:00
ASSERT_TRUE(r);
const size_t magiclen = strlen(OUTPUT_EXPORT_FILE_MAGIC);
ASSERT_FALSE(data.size() < magiclen || memcmp(data.data(), OUTPUT_EXPORT_FILE_MAGIC, magiclen));
// decrypt (copied from wallet2::decrypt)
auto decrypt = [] (const std::string &ciphertext, const crypto::secret_key &skey, bool authenticated) -> string
{
const size_t prefix_size = sizeof(chacha8_iv) + (authenticated ? sizeof(crypto::signature) : 0);
if(ciphertext.size() < prefix_size)
return {};
crypto::chacha8_key key;
crypto::generate_chacha8_key(&skey, sizeof(skey), key);
const crypto::chacha8_iv &iv = *(const crypto::chacha8_iv*)&ciphertext[0];
std::string plaintext;
plaintext.resize(ciphertext.size() - prefix_size);
if (authenticated)
{
crypto::hash hash;
crypto::cn_fast_hash(ciphertext.data(), ciphertext.size() - sizeof(signature), hash);
crypto::public_key pkey;
crypto::secret_key_to_public_key(skey, pkey);
const crypto::signature &signature = *(const crypto::signature*)&ciphertext[ciphertext.size() - sizeof(crypto::signature)];
if(!crypto::check_signature(hash, pkey, signature))
return {};
}
crypto::chacha8(ciphertext.data() + sizeof(iv), ciphertext.size() - prefix_size, key, iv, &plaintext[0]);
return std::move(plaintext);
};
crypto::secret_key view_secret_key;
epee::string_tools::hex_to_pod("339673bb1187e2f73ba7841ab6841c5553f96e9f13f8fe6612e69318db4e9d0a", view_secret_key);
bool authenticated = true;
data = decrypt(std::string(data, magiclen), view_secret_key, authenticated);
ASSERT_FALSE(data.empty());
// check public view/spend keys
const size_t headerlen = 2 * sizeof(crypto::public_key);
ASSERT_FALSE(data.size() < headerlen);
const crypto::public_key &public_spend_key = *(const crypto::public_key*)&data[0];
const crypto::public_key &public_view_key = *(const crypto::public_key*)&data[sizeof(crypto::public_key)];
ASSERT_TRUE(epee::string_tools::pod_to_hex(public_spend_key) == "13daa2af00ad26a372d317195de0bdd716f7a05d33bc4d7aff1664b6ee93c060");
ASSERT_TRUE(epee::string_tools::pod_to_hex(public_view_key) == "e47d4b6df6ab7339539148c2a03ad3e2f3434e5ab2046848e1f21369a3937cad");
r = false;
std::vector<tools::wallet2::transfer_details> outputs;
try
{
std::istringstream iss(std::string(data, headerlen));
boost::archive::portable_binary_iarchive ar(iss);
ar >> outputs;
r = true;
}
catch (...)
{}
ASSERT_TRUE(r);
/*
fields of tools::wallet2::transfer_details to be checked:
uint64_t m_block_height
cryptonote::transaction_prefix m_tx // TODO
crypto::hash m_txid
size_t m_internal_output_index
uint64_t m_global_output_index
bool m_spent
uint64_t m_spent_height
crypto::key_image m_key_image
rct::key m_mask
uint64_t m_amount
bool m_rct
bool m_key_image_known
size_t m_pk_index
*/
ASSERT_TRUE(outputs.size() == 3);
auto& td0 = outputs[0];
auto& td1 = outputs[1];
auto& td2 = outputs[2];
ASSERT_TRUE(td0.m_block_height == 818424);
ASSERT_TRUE(td1.m_block_height == 818522);
ASSERT_TRUE(td2.m_block_height == 818522);
ASSERT_TRUE(epee::string_tools::pod_to_hex(td0.m_txid) == "15024343b38e77a1a9860dfed29921fa17e833fec837191a6b04fa7cb9605b8e");
ASSERT_TRUE(epee::string_tools::pod_to_hex(td1.m_txid) == "ec34c9bb12b99af33d49691384eee5bed9171498ff04e59516505f35d1fc5efc");
ASSERT_TRUE(epee::string_tools::pod_to_hex(td2.m_txid) == "6e7013684d35820f66c6679197ded9329bfe0e495effa47e7b25258799858dba");
ASSERT_TRUE(td0.m_internal_output_index == 0);
ASSERT_TRUE(td1.m_internal_output_index == 0);
ASSERT_TRUE(td2.m_internal_output_index == 1);
ASSERT_TRUE(td0.m_global_output_index == 19642);
ASSERT_TRUE(td1.m_global_output_index == 19757);
ASSERT_TRUE(td2.m_global_output_index == 19760);
ASSERT_TRUE (td0.m_spent);
ASSERT_FALSE(td1.m_spent);
ASSERT_FALSE(td2.m_spent);
ASSERT_TRUE(td0.m_spent_height == 0);
ASSERT_TRUE(td1.m_spent_height == 0);
ASSERT_TRUE(td2.m_spent_height == 0);
ASSERT_TRUE(epee::string_tools::pod_to_hex(td0.m_key_image) == "c5680d3735b90871ca5e3d90cd82d6483eed1151b9ab75c2c8c3a7d89e00a5a8");
ASSERT_TRUE(epee::string_tools::pod_to_hex(td1.m_key_image) == "d54cbd435a8d636ad9b01b8d4f3eb13bd0cf1ce98eddf53ab1617f9b763e66c0");
ASSERT_TRUE(epee::string_tools::pod_to_hex(td2.m_key_image) == "6c3cd6af97c4070a7aef9b1344e7463e29c7cd245076fdb65da447a34da3ca76");
ASSERT_TRUE(epee::string_tools::pod_to_hex(td0.m_mask) == "0100000000000000000000000000000000000000000000000000000000000000");
ASSERT_TRUE(epee::string_tools::pod_to_hex(td1.m_mask) == "d3997a7b27fa199a377643b88cbd3f20f447496746dabe92d288730ecaeda007");
ASSERT_TRUE(epee::string_tools::pod_to_hex(td2.m_mask) == "789bafff169ef206aa21219342c69ca52ce1d78d776c10b21d14bdd960fc7703");
ASSERT_TRUE(td0.m_amount == 13400845012231);
ASSERT_TRUE(td1.m_amount == 1200000000000);
ASSERT_TRUE(td2.m_amount == 11066009260865);
ASSERT_TRUE(td0.m_rct);
ASSERT_TRUE(td1.m_rct);
ASSERT_TRUE(td2.m_rct);
ASSERT_TRUE(td0.m_key_image_known);
ASSERT_TRUE(td1.m_key_image_known);
ASSERT_TRUE(td2.m_key_image_known);
ASSERT_TRUE(td0.m_pk_index == 0);
ASSERT_TRUE(td1.m_pk_index == 0);
ASSERT_TRUE(td2.m_pk_index == 0);
}
#define UNSIGNED_TX_PREFIX "Monero unsigned tx set\003"
TEST(Serialization, portability_unsigned_tx)
{
const boost::filesystem::path filename = unit_test::data_dir / "unsigned_monero_tx";
2017-01-01 18:43:20 -07:00
std::string s;
const bool testnet = true;
2017-10-08 15:59:08 -06:00
bool r = epee::file_io_utils::load_file_to_string(filename.string(), s);
2017-01-01 18:43:20 -07:00
ASSERT_TRUE(r);
const size_t magiclen = strlen(UNSIGNED_TX_PREFIX);
ASSERT_FALSE(strncmp(s.c_str(), UNSIGNED_TX_PREFIX, magiclen));
tools::wallet2::unsigned_tx_set exported_txs;
s = s.substr(magiclen);
r = false;
try
{
std::istringstream iss(s);
boost::archive::portable_binary_iarchive ar(iss);
ar >> exported_txs;
r = true;
}
catch (...)
{}
ASSERT_TRUE(r);
/*
fields of tools::wallet2::unsigned_tx_set to be checked:
std::vector<tx_construction_data> txes
std::vector<wallet2::transfer_details> m_transfers
fields of toolw::wallet2::tx_construction_data to be checked:
std::vector<cryptonote::tx_source_entry> sources
cryptonote::tx_destination_entry change_dts
std::vector<cryptonote::tx_destination_entry> splitted_dsts
std::list<size_t> selected_transfers
std::vector<uint8_t> extra
uint64_t unlock_time
bool use_rct
std::vector<cryptonote::tx_destination_entry> dests
fields of cryptonote::tx_source_entry to be checked:
std::vector<std::pair<uint64_t, rct::ctkey>> outputs
size_t real_output
crypto::public_key real_out_tx_key
size_t real_output_in_tx_index
uint64_t amount
bool rct
rct::key mask
fields of cryptonote::tx_destination_entry to be checked:
uint64_t amount
account_public_address addr
*/
// txes
ASSERT_TRUE(exported_txs.txes.size() == 1);
auto& tcd = exported_txs.txes[0];
// tcd.sources
ASSERT_TRUE(tcd.sources.size() == 1);
auto& tse = tcd.sources[0];
// tcd.sources[0].outputs
ASSERT_TRUE(tse.outputs.size() == 5);
auto& out0 = tse.outputs[0];
auto& out1 = tse.outputs[1];
auto& out2 = tse.outputs[2];
auto& out3 = tse.outputs[3];
auto& out4 = tse.outputs[4];
ASSERT_TRUE(out0.first == 6295);
ASSERT_TRUE(out1.first == 14302);
ASSERT_TRUE(out2.first == 17598);
ASSERT_TRUE(out3.first == 18671);
ASSERT_TRUE(out4.first == 19760);
ASSERT_TRUE(epee::string_tools::pod_to_hex(out0.second) == "e7272cb589954ddeedd20de9411ed57265f154d41f33cec9ff69e5d642e09814096490b0ac85308342acf436cc0270d53abef9dc04c6202f2459e879bfd40ce6");
ASSERT_TRUE(epee::string_tools::pod_to_hex(out1.second) == "c3a9f49d1fe75939cc3feb39871ce0a7366c2879a63faa1a5cf34e65723b120a272ff0c7d84ab8b6ee3528d196450b0e28b3fed276bc2597a2b5b17afb9354ab");
ASSERT_TRUE(epee::string_tools::pod_to_hex(out2.second) == "176e239c8c39000c2275e2f63ed7d55c55e0843524091522bbd3d3b869044969021fad70fc1244115449d4754829ae7c47346342ee5d52a2cdd47dfc351d0ab0");
ASSERT_TRUE(epee::string_tools::pod_to_hex(out3.second) == "ef12d7946302fb064f2ba9df1a73d72233ac74664ed3b370580fa3bdc377542ad93f64898bd95851d6efe0d7bf2dbbea9b7c6b3c57e2c807e7b17d55b4622259");
ASSERT_TRUE(epee::string_tools::pod_to_hex(out4.second) == "0d8467e16e73d16510452b78823e082e05ee3a63788d40de577cf31eb555f0c8525096cbc88d00a841eed66f3cdb6f0a018e6ce9fb9433ed61afba15cbbebd04");
// tcd.sources[0].{real_output, real_out_tx_key, real_output_in_tx_index, amount, rct, mask}
ASSERT_TRUE(tse.real_output == 4);
ASSERT_TRUE(epee::string_tools::pod_to_hex(tse.real_out_tx_key) == "4d86c7ba1c285fe4bc1cd7b54ba894fa89fa02fc6b0bbeea67d53251acd14a05");
ASSERT_TRUE(tse.real_output_in_tx_index == 1);
ASSERT_TRUE(tse.amount == 11066009260865);
ASSERT_TRUE(tse.rct);
ASSERT_TRUE(epee::string_tools::pod_to_hex(tse.mask) == "789bafff169ef206aa21219342c69ca52ce1d78d776c10b21d14bdd960fc7703");
// tcd.change_dts
ASSERT_TRUE(tcd.change_dts.amount == 9631208773403);
2017-02-18 19:42:10 -07:00
ASSERT_TRUE(cryptonote::get_account_address_as_str(testnet, false, tcd.change_dts.addr) == "9svHk1wHPo3ULf2AZykghzcye6sitaRE4MaDjPC6uanTHCynHjJHZaiAb922PojE1GexhhRt1LVf5DC43feyrRZMLXQr3mk");
2017-01-01 18:43:20 -07:00
// tcd.splitted_dsts
ASSERT_TRUE(tcd.splitted_dsts.size() == 2);
auto& splitted_dst0 = tcd.splitted_dsts[0];
auto& splitted_dst1 = tcd.splitted_dsts[1];
ASSERT_TRUE(splitted_dst0.amount == 1400000000000);
ASSERT_TRUE(splitted_dst1.amount == 9631208773403);
2017-02-18 19:42:10 -07:00
ASSERT_TRUE(cryptonote::get_account_address_as_str(testnet, false, splitted_dst0.addr) == "9xnhrMczQkPeoGi6dyu6BgKAYX4tZsDs6KHCkyTStDBKL4M4pM1gfCR3utmTAcSaKHGa1R5o266FbdnubErmij3oMdLyYgA");
ASSERT_TRUE(cryptonote::get_account_address_as_str(testnet, false, splitted_dst1.addr) == "9svHk1wHPo3ULf2AZykghzcye6sitaRE4MaDjPC6uanTHCynHjJHZaiAb922PojE1GexhhRt1LVf5DC43feyrRZMLXQr3mk");
2017-01-01 18:43:20 -07:00
// tcd.selected_transfers
ASSERT_TRUE(tcd.selected_transfers.size() == 1);
ASSERT_TRUE(tcd.selected_transfers.front() == 2);
// tcd.extra
ASSERT_TRUE(tcd.extra.size() == 68);
// tcd.{unlock_time, use_rct}
ASSERT_TRUE(tcd.unlock_time == 0);
ASSERT_TRUE(tcd.use_rct);
// tcd.dests
ASSERT_TRUE(tcd.dests.size() == 1);
auto& dest = tcd.dests[0];
ASSERT_TRUE(dest.amount == 1400000000000);
2017-02-18 19:42:10 -07:00
ASSERT_TRUE(cryptonote::get_account_address_as_str(testnet, false, dest.addr) == "9xnhrMczQkPeoGi6dyu6BgKAYX4tZsDs6KHCkyTStDBKL4M4pM1gfCR3utmTAcSaKHGa1R5o266FbdnubErmij3oMdLyYgA");
2017-01-01 18:43:20 -07:00
// transfers
ASSERT_TRUE(exported_txs.transfers.size() == 3);
auto& td0 = exported_txs.transfers[0];
auto& td1 = exported_txs.transfers[1];
auto& td2 = exported_txs.transfers[2];
ASSERT_TRUE(td0.m_block_height == 818424);
ASSERT_TRUE(td1.m_block_height == 818522);
ASSERT_TRUE(td2.m_block_height == 818522);
ASSERT_TRUE(epee::string_tools::pod_to_hex(td0.m_txid) == "15024343b38e77a1a9860dfed29921fa17e833fec837191a6b04fa7cb9605b8e");
ASSERT_TRUE(epee::string_tools::pod_to_hex(td1.m_txid) == "ec34c9bb12b99af33d49691384eee5bed9171498ff04e59516505f35d1fc5efc");
ASSERT_TRUE(epee::string_tools::pod_to_hex(td2.m_txid) == "6e7013684d35820f66c6679197ded9329bfe0e495effa47e7b25258799858dba");
ASSERT_TRUE(td0.m_internal_output_index == 0);
ASSERT_TRUE(td1.m_internal_output_index == 0);
ASSERT_TRUE(td2.m_internal_output_index == 1);
ASSERT_TRUE(td0.m_global_output_index == 19642);
ASSERT_TRUE(td1.m_global_output_index == 19757);
ASSERT_TRUE(td2.m_global_output_index == 19760);
ASSERT_TRUE (td0.m_spent);
ASSERT_FALSE(td1.m_spent);
ASSERT_FALSE(td2.m_spent);
ASSERT_TRUE(td0.m_spent_height == 0);
ASSERT_TRUE(td1.m_spent_height == 0);
ASSERT_TRUE(td2.m_spent_height == 0);
ASSERT_TRUE(epee::string_tools::pod_to_hex(td0.m_key_image) == "c5680d3735b90871ca5e3d90cd82d6483eed1151b9ab75c2c8c3a7d89e00a5a8");
ASSERT_TRUE(epee::string_tools::pod_to_hex(td1.m_key_image) == "d54cbd435a8d636ad9b01b8d4f3eb13bd0cf1ce98eddf53ab1617f9b763e66c0");
ASSERT_TRUE(epee::string_tools::pod_to_hex(td2.m_key_image) == "6c3cd6af97c4070a7aef9b1344e7463e29c7cd245076fdb65da447a34da3ca76");
ASSERT_TRUE(epee::string_tools::pod_to_hex(td0.m_mask) == "0100000000000000000000000000000000000000000000000000000000000000");
ASSERT_TRUE(epee::string_tools::pod_to_hex(td1.m_mask) == "d3997a7b27fa199a377643b88cbd3f20f447496746dabe92d288730ecaeda007");
ASSERT_TRUE(epee::string_tools::pod_to_hex(td2.m_mask) == "789bafff169ef206aa21219342c69ca52ce1d78d776c10b21d14bdd960fc7703");
ASSERT_TRUE(td0.m_amount == 13400845012231);
ASSERT_TRUE(td1.m_amount == 1200000000000);
ASSERT_TRUE(td2.m_amount == 11066009260865);
ASSERT_TRUE(td0.m_rct);
ASSERT_TRUE(td1.m_rct);
ASSERT_TRUE(td2.m_rct);
ASSERT_TRUE(td0.m_key_image_known);
ASSERT_TRUE(td1.m_key_image_known);
ASSERT_TRUE(td2.m_key_image_known);
ASSERT_TRUE(td0.m_pk_index == 0);
ASSERT_TRUE(td1.m_pk_index == 0);
ASSERT_TRUE(td2.m_pk_index == 0);
}
#define SIGNED_TX_PREFIX "Monero signed tx set\003"
TEST(Serialization, portability_signed_tx)
{
const boost::filesystem::path filename = unit_test::data_dir / "signed_monero_tx";
2017-01-01 18:43:20 -07:00
const bool testnet = true;
std::string s;
2017-10-08 15:59:08 -06:00
bool r = epee::file_io_utils::load_file_to_string(filename.string(), s);
2017-01-01 18:43:20 -07:00
ASSERT_TRUE(r);
const size_t magiclen = strlen(SIGNED_TX_PREFIX);
ASSERT_FALSE(strncmp(s.c_str(), SIGNED_TX_PREFIX, magiclen));
tools::wallet2::signed_tx_set exported_txs;
s = s.substr(magiclen);
r = false;
try
{
std::istringstream iss(s);
boost::archive::portable_binary_iarchive ar(iss);
ar >> exported_txs;
r = true;
}
catch (...)
{}
ASSERT_TRUE(r);
/*
fields of tools::wallet2::signed_tx_set to be checked:
std::vector<pending_tx> ptx
std::vector<crypto::key_image> key_images
fields of tools::walllet2::pending_tx to be checked:
cryptonote::transaction tx // TODO
uint64_t dust
uint64_t fee
bool dust_added_to_fee
cryptonote::tx_destination_entry change_dts
std::list<size_t> selected_transfers
std::string key_images
crypto::secret_key tx_key
std::vector<cryptonote::tx_destination_entry> dests
tx_construction_data construction_data
*/
// ptx
ASSERT_TRUE(exported_txs.ptx.size() == 1);
auto& ptx = exported_txs.ptx[0];
// ptx.{dust, fee, dust_added_to_fee}
ASSERT_TRUE (ptx.dust == 0);
ASSERT_TRUE (ptx.fee == 34800487462);
ASSERT_FALSE(ptx.dust_added_to_fee);
// ptx.change.{amount, addr}
ASSERT_TRUE(ptx.change_dts.amount == 9631208773403);
2017-02-18 19:42:10 -07:00
ASSERT_TRUE(cryptonote::get_account_address_as_str(testnet, false, ptx.change_dts.addr) == "9svHk1wHPo3ULf2AZykghzcye6sitaRE4MaDjPC6uanTHCynHjJHZaiAb922PojE1GexhhRt1LVf5DC43feyrRZMLXQr3mk");
2017-01-01 18:43:20 -07:00
// ptx.selected_transfers
ASSERT_TRUE(ptx.selected_transfers.size() == 1);
ASSERT_TRUE(ptx.selected_transfers.front() == 2);
// ptx.{key_images, tx_key}
ASSERT_TRUE(ptx.key_images == "<6c3cd6af97c4070a7aef9b1344e7463e29c7cd245076fdb65da447a34da3ca76> ");
ASSERT_TRUE(epee::string_tools::pod_to_hex(ptx.tx_key) == "0100000000000000000000000000000000000000000000000000000000000000");
// ptx.dests
ASSERT_TRUE(ptx.dests.size() == 1);
ASSERT_TRUE(ptx.dests[0].amount == 1400000000000);
2017-02-18 19:42:10 -07:00
ASSERT_TRUE(cryptonote::get_account_address_as_str(testnet, false, ptx.dests[0].addr) == "9xnhrMczQkPeoGi6dyu6BgKAYX4tZsDs6KHCkyTStDBKL4M4pM1gfCR3utmTAcSaKHGa1R5o266FbdnubErmij3oMdLyYgA");
2017-01-01 18:43:20 -07:00
// ptx.construction_data
auto& tcd = ptx.construction_data;
ASSERT_TRUE(tcd.sources.size() == 1);
auto& tse = tcd.sources[0];
// ptx.construction_data.sources[0].outputs
ASSERT_TRUE(tse.outputs.size() == 5);
auto& out0 = tse.outputs[0];
auto& out1 = tse.outputs[1];
auto& out2 = tse.outputs[2];
auto& out3 = tse.outputs[3];
auto& out4 = tse.outputs[4];
ASSERT_TRUE(out0.first == 6295);
ASSERT_TRUE(out1.first == 14302);
ASSERT_TRUE(out2.first == 17598);
ASSERT_TRUE(out3.first == 18671);
ASSERT_TRUE(out4.first == 19760);
ASSERT_TRUE(epee::string_tools::pod_to_hex(out0.second) == "e7272cb589954ddeedd20de9411ed57265f154d41f33cec9ff69e5d642e09814096490b0ac85308342acf436cc0270d53abef9dc04c6202f2459e879bfd40ce6");
ASSERT_TRUE(epee::string_tools::pod_to_hex(out1.second) == "c3a9f49d1fe75939cc3feb39871ce0a7366c2879a63faa1a5cf34e65723b120a272ff0c7d84ab8b6ee3528d196450b0e28b3fed276bc2597a2b5b17afb9354ab");
ASSERT_TRUE(epee::string_tools::pod_to_hex(out2.second) == "176e239c8c39000c2275e2f63ed7d55c55e0843524091522bbd3d3b869044969021fad70fc1244115449d4754829ae7c47346342ee5d52a2cdd47dfc351d0ab0");
ASSERT_TRUE(epee::string_tools::pod_to_hex(out3.second) == "ef12d7946302fb064f2ba9df1a73d72233ac74664ed3b370580fa3bdc377542ad93f64898bd95851d6efe0d7bf2dbbea9b7c6b3c57e2c807e7b17d55b4622259");
ASSERT_TRUE(epee::string_tools::pod_to_hex(out4.second) == "0d8467e16e73d16510452b78823e082e05ee3a63788d40de577cf31eb555f0c8525096cbc88d00a841eed66f3cdb6f0a018e6ce9fb9433ed61afba15cbbebd04");
// ptx.construction_data.sources[0].{real_output, real_out_tx_key, real_output_in_tx_index, amount, rct, mask}
ASSERT_TRUE(tse.real_output == 4);
ASSERT_TRUE(epee::string_tools::pod_to_hex(tse.real_out_tx_key) == "4d86c7ba1c285fe4bc1cd7b54ba894fa89fa02fc6b0bbeea67d53251acd14a05");
ASSERT_TRUE(tse.real_output_in_tx_index == 1);
ASSERT_TRUE(tse.amount == 11066009260865);
ASSERT_TRUE(tse.rct);
ASSERT_TRUE(epee::string_tools::pod_to_hex(tse.mask) == "789bafff169ef206aa21219342c69ca52ce1d78d776c10b21d14bdd960fc7703");
// ptx.construction_data.change_dts
ASSERT_TRUE(tcd.change_dts.amount == 9631208773403);
2017-02-18 19:42:10 -07:00
ASSERT_TRUE(cryptonote::get_account_address_as_str(testnet, false, tcd.change_dts.addr) == "9svHk1wHPo3ULf2AZykghzcye6sitaRE4MaDjPC6uanTHCynHjJHZaiAb922PojE1GexhhRt1LVf5DC43feyrRZMLXQr3mk");
2017-01-01 18:43:20 -07:00
// ptx.construction_data.splitted_dsts
ASSERT_TRUE(tcd.splitted_dsts.size() == 2);
auto& splitted_dst0 = tcd.splitted_dsts[0];
auto& splitted_dst1 = tcd.splitted_dsts[1];
ASSERT_TRUE(splitted_dst0.amount == 1400000000000);
ASSERT_TRUE(splitted_dst1.amount == 9631208773403);
2017-02-18 19:42:10 -07:00
ASSERT_TRUE(cryptonote::get_account_address_as_str(testnet, false, splitted_dst0.addr) == "9xnhrMczQkPeoGi6dyu6BgKAYX4tZsDs6KHCkyTStDBKL4M4pM1gfCR3utmTAcSaKHGa1R5o266FbdnubErmij3oMdLyYgA");
ASSERT_TRUE(cryptonote::get_account_address_as_str(testnet, false, splitted_dst1.addr) == "9svHk1wHPo3ULf2AZykghzcye6sitaRE4MaDjPC6uanTHCynHjJHZaiAb922PojE1GexhhRt1LVf5DC43feyrRZMLXQr3mk");
2017-01-01 18:43:20 -07:00
// ptx.construction_data.selected_transfers
ASSERT_TRUE(tcd.selected_transfers.size() == 1);
ASSERT_TRUE(tcd.selected_transfers.front() == 2);
// ptx.construction_data.extra
ASSERT_TRUE(tcd.extra.size() == 68);
// ptx.construction_data.{unlock_time, use_rct}
ASSERT_TRUE(tcd.unlock_time == 0);
ASSERT_TRUE(tcd.use_rct);
// ptx.construction_data.dests
ASSERT_TRUE(tcd.dests.size() == 1);
auto& dest = tcd.dests[0];
ASSERT_TRUE(dest.amount == 1400000000000);
2017-02-18 19:42:10 -07:00
ASSERT_TRUE(cryptonote::get_account_address_as_str(testnet, false, dest.addr) == "9xnhrMczQkPeoGi6dyu6BgKAYX4tZsDs6KHCkyTStDBKL4M4pM1gfCR3utmTAcSaKHGa1R5o266FbdnubErmij3oMdLyYgA");
2017-01-01 18:43:20 -07:00
// key_images
ASSERT_TRUE(exported_txs.key_images.size() == 3);
auto& ki0 = exported_txs.key_images[0];
auto& ki1 = exported_txs.key_images[1];
auto& ki2 = exported_txs.key_images[2];
ASSERT_TRUE(epee::string_tools::pod_to_hex(ki0) == "c5680d3735b90871ca5e3d90cd82d6483eed1151b9ab75c2c8c3a7d89e00a5a8");
ASSERT_TRUE(epee::string_tools::pod_to_hex(ki1) == "d54cbd435a8d636ad9b01b8d4f3eb13bd0cf1ce98eddf53ab1617f9b763e66c0");
ASSERT_TRUE(epee::string_tools::pod_to_hex(ki2) == "6c3cd6af97c4070a7aef9b1344e7463e29c7cd245076fdb65da447a34da3ca76");
}