Merge pull request #5126
f1fb06b1
Fixed path to int-util.h (SChernykh)9da0892b
Adding cnv4-2 tweaks (SChernykh)f51397b3
Cryptonight variant 4 aka CryptonightR (SChernykh)
This commit is contained in:
commit
1b4fa00d7c
|
@ -73,18 +73,18 @@ namespace crypto {
|
|||
inline void generate_chacha_key(const void *data, size_t size, chacha_key& key, uint64_t kdf_rounds) {
|
||||
static_assert(sizeof(chacha_key) <= sizeof(hash), "Size of hash must be at least that of chacha_key");
|
||||
epee::mlocked<tools::scrubbed_arr<char, HASH_SIZE>> pwd_hash;
|
||||
crypto::cn_slow_hash(data, size, pwd_hash.data(), 0/*variant*/, 0/*prehashed*/);
|
||||
crypto::cn_slow_hash(data, size, pwd_hash.data(), 0/*variant*/, 0/*prehashed*/, 0/*height*/);
|
||||
for (uint64_t n = 1; n < kdf_rounds; ++n)
|
||||
crypto::cn_slow_hash(pwd_hash.data(), pwd_hash.size(), pwd_hash.data(), 0/*variant*/, 0/*prehashed*/);
|
||||
crypto::cn_slow_hash(pwd_hash.data(), pwd_hash.size(), pwd_hash.data(), 0/*variant*/, 0/*prehashed*/, 0/*height*/);
|
||||
memcpy(&unwrap(unwrap(key)), pwd_hash.data(), sizeof(key));
|
||||
}
|
||||
|
||||
inline void generate_chacha_key_prehashed(const void *data, size_t size, chacha_key& key, uint64_t kdf_rounds) {
|
||||
static_assert(sizeof(chacha_key) <= sizeof(hash), "Size of hash must be at least that of chacha_key");
|
||||
epee::mlocked<tools::scrubbed_arr<char, HASH_SIZE>> pwd_hash;
|
||||
crypto::cn_slow_hash(data, size, pwd_hash.data(), 0/*variant*/, 1/*prehashed*/);
|
||||
crypto::cn_slow_hash(data, size, pwd_hash.data(), 0/*variant*/, 1/*prehashed*/, 0/*height*/);
|
||||
for (uint64_t n = 1; n < kdf_rounds; ++n)
|
||||
crypto::cn_slow_hash(pwd_hash.data(), pwd_hash.size(), pwd_hash.data(), 0/*variant*/, 0/*prehashed*/);
|
||||
crypto::cn_slow_hash(pwd_hash.data(), pwd_hash.size(), pwd_hash.data(), 0/*variant*/, 0/*prehashed*/, 0/*height*/);
|
||||
memcpy(&unwrap(unwrap(key)), pwd_hash.data(), sizeof(key));
|
||||
}
|
||||
|
||||
|
|
|
@ -79,7 +79,7 @@ enum {
|
|||
};
|
||||
|
||||
void cn_fast_hash(const void *data, size_t length, char *hash);
|
||||
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed);
|
||||
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed, uint64_t height);
|
||||
|
||||
void hash_extra_blake(const void *data, size_t length, char *hash);
|
||||
void hash_extra_groestl(const void *data, size_t length, char *hash);
|
||||
|
|
|
@ -71,12 +71,12 @@ namespace crypto {
|
|||
return h;
|
||||
}
|
||||
|
||||
inline void cn_slow_hash(const void *data, std::size_t length, hash &hash, int variant = 0) {
|
||||
cn_slow_hash(data, length, reinterpret_cast<char *>(&hash), variant, 0/*prehashed*/);
|
||||
inline void cn_slow_hash(const void *data, std::size_t length, hash &hash, int variant = 0, uint64_t height = 0) {
|
||||
cn_slow_hash(data, length, reinterpret_cast<char *>(&hash), variant, 0/*prehashed*/, height);
|
||||
}
|
||||
|
||||
inline void cn_slow_hash_prehashed(const void *data, std::size_t length, hash &hash, int variant = 0) {
|
||||
cn_slow_hash(data, length, reinterpret_cast<char *>(&hash), variant, 1/*prehashed*/);
|
||||
inline void cn_slow_hash_prehashed(const void *data, std::size_t length, hash &hash, int variant = 0, uint64_t height = 0) {
|
||||
cn_slow_hash(data, length, reinterpret_cast<char *>(&hash), variant, 1/*prehashed*/, height);
|
||||
}
|
||||
|
||||
inline void tree_hash(const hash *hashes, std::size_t count, hash &root_hash) {
|
||||
|
|
|
@ -39,6 +39,7 @@
|
|||
#include "hash-ops.h"
|
||||
#include "oaes_lib.h"
|
||||
#include "variant2_int_sqrt.h"
|
||||
#include "variant4_random_math.h"
|
||||
|
||||
#define MEMORY (1 << 21) // 2MB scratchpad
|
||||
#define ITER (1 << 20)
|
||||
|
@ -116,48 +117,74 @@ extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *ex
|
|||
#define VARIANT2_SHUFFLE_ADD_SSE2(base_ptr, offset) \
|
||||
do if (variant >= 2) \
|
||||
{ \
|
||||
const __m128i chunk1 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x10))); \
|
||||
__m128i chunk1 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x10))); \
|
||||
const __m128i chunk2 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x20))); \
|
||||
const __m128i chunk3 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x30))); \
|
||||
_mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x10)), _mm_add_epi64(chunk3, _b1)); \
|
||||
_mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x20)), _mm_add_epi64(chunk1, _b)); \
|
||||
_mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x30)), _mm_add_epi64(chunk2, _a)); \
|
||||
if (variant >= 4) \
|
||||
{ \
|
||||
chunk1 = _mm_xor_si128(chunk1, chunk2); \
|
||||
_c = _mm_xor_si128(_c, chunk3); \
|
||||
_c = _mm_xor_si128(_c, chunk1); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define VARIANT2_SHUFFLE_ADD_NEON(base_ptr, offset) \
|
||||
do if (variant >= 2) \
|
||||
{ \
|
||||
const uint64x2_t chunk1 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x10))); \
|
||||
uint64x2_t chunk1 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x10))); \
|
||||
const uint64x2_t chunk2 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x20))); \
|
||||
const uint64x2_t chunk3 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x30))); \
|
||||
vst1q_u64(U64((base_ptr) + ((offset) ^ 0x10)), vaddq_u64(chunk3, vreinterpretq_u64_u8(_b1))); \
|
||||
vst1q_u64(U64((base_ptr) + ((offset) ^ 0x20)), vaddq_u64(chunk1, vreinterpretq_u64_u8(_b))); \
|
||||
vst1q_u64(U64((base_ptr) + ((offset) ^ 0x30)), vaddq_u64(chunk2, vreinterpretq_u64_u8(_a))); \
|
||||
if (variant >= 4) \
|
||||
{ \
|
||||
chunk1 = veorq_u64(chunk1, chunk2); \
|
||||
_c = vreinterpretq_u8_u64(veorq_u64(vreinterpretq_u64_u8(_c), chunk3)); \
|
||||
_c = vreinterpretq_u8_u64(veorq_u64(vreinterpretq_u64_u8(_c), chunk1)); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define VARIANT2_PORTABLE_SHUFFLE_ADD(base_ptr, offset) \
|
||||
#define VARIANT2_PORTABLE_SHUFFLE_ADD(out, a_, base_ptr, offset) \
|
||||
do if (variant >= 2) \
|
||||
{ \
|
||||
uint64_t* chunk1 = U64((base_ptr) + ((offset) ^ 0x10)); \
|
||||
uint64_t* chunk2 = U64((base_ptr) + ((offset) ^ 0x20)); \
|
||||
uint64_t* chunk3 = U64((base_ptr) + ((offset) ^ 0x30)); \
|
||||
\
|
||||
const uint64_t chunk1_old[2] = { chunk1[0], chunk1[1] }; \
|
||||
uint64_t chunk1_old[2] = { SWAP64LE(chunk1[0]), SWAP64LE(chunk1[1]) }; \
|
||||
const uint64_t chunk2_old[2] = { SWAP64LE(chunk2[0]), SWAP64LE(chunk2[1]) }; \
|
||||
const uint64_t chunk3_old[2] = { SWAP64LE(chunk3[0]), SWAP64LE(chunk3[1]) }; \
|
||||
\
|
||||
uint64_t b1[2]; \
|
||||
memcpy_swap64le(b1, b + 16, 2); \
|
||||
chunk1[0] = SWAP64LE(SWAP64LE(chunk3[0]) + b1[0]); \
|
||||
chunk1[1] = SWAP64LE(SWAP64LE(chunk3[1]) + b1[1]); \
|
||||
chunk1[0] = SWAP64LE(chunk3_old[0] + b1[0]); \
|
||||
chunk1[1] = SWAP64LE(chunk3_old[1] + b1[1]); \
|
||||
\
|
||||
uint64_t a0[2]; \
|
||||
memcpy_swap64le(a0, a, 2); \
|
||||
chunk3[0] = SWAP64LE(SWAP64LE(chunk2[0]) + a0[0]); \
|
||||
chunk3[1] = SWAP64LE(SWAP64LE(chunk2[1]) + a0[1]); \
|
||||
memcpy_swap64le(a0, a_, 2); \
|
||||
chunk3[0] = SWAP64LE(chunk2_old[0] + a0[0]); \
|
||||
chunk3[1] = SWAP64LE(chunk2_old[1] + a0[1]); \
|
||||
\
|
||||
uint64_t b0[2]; \
|
||||
memcpy_swap64le(b0, b, 2); \
|
||||
chunk2[0] = SWAP64LE(SWAP64LE(chunk1_old[0]) + b0[0]); \
|
||||
chunk2[0] = SWAP64LE(chunk1_old[0] + b0[0]); \
|
||||
chunk2[1] = SWAP64LE(SWAP64LE(chunk1_old[1]) + b0[1]); \
|
||||
if (variant >= 4) \
|
||||
{ \
|
||||
uint64_t out_copy[2]; \
|
||||
memcpy_swap64le(out_copy, out, 2); \
|
||||
chunk1_old[0] ^= chunk2_old[0]; \
|
||||
chunk1_old[1] ^= chunk2_old[1]; \
|
||||
out_copy[0] ^= chunk3_old[0]; \
|
||||
out_copy[1] ^= chunk3_old[1]; \
|
||||
out_copy[0] ^= chunk1_old[0]; \
|
||||
out_copy[1] ^= chunk1_old[1]; \
|
||||
memcpy_swap64le(out, out_copy, 2); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr) \
|
||||
|
@ -172,7 +199,7 @@ extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *ex
|
|||
const uint64_t sqrt_input = SWAP64LE(((uint64_t*)(ptr))[0]) + division_result
|
||||
|
||||
#define VARIANT2_INTEGER_MATH_SSE2(b, ptr) \
|
||||
do if (variant >= 2) \
|
||||
do if ((variant == 2) || (variant == 3)) \
|
||||
{ \
|
||||
VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \
|
||||
VARIANT2_INTEGER_MATH_SQRT_STEP_SSE2(); \
|
||||
|
@ -182,7 +209,7 @@ extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *ex
|
|||
#if defined DBL_MANT_DIG && (DBL_MANT_DIG >= 50)
|
||||
// double precision floating point type has enough bits of precision on current platform
|
||||
#define VARIANT2_PORTABLE_INTEGER_MATH(b, ptr) \
|
||||
do if (variant >= 2) \
|
||||
do if ((variant == 2) || (variant == 3)) \
|
||||
{ \
|
||||
VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \
|
||||
VARIANT2_INTEGER_MATH_SQRT_STEP_FP64(); \
|
||||
|
@ -192,7 +219,7 @@ extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *ex
|
|||
// double precision floating point type is not good enough on current platform
|
||||
// fall back to the reference code (integer only)
|
||||
#define VARIANT2_PORTABLE_INTEGER_MATH(b, ptr) \
|
||||
do if (variant >= 2) \
|
||||
do if ((variant == 2) || (variant == 3)) \
|
||||
{ \
|
||||
VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \
|
||||
VARIANT2_INTEGER_MATH_SQRT_STEP_REF(); \
|
||||
|
@ -200,13 +227,13 @@ extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *ex
|
|||
#endif
|
||||
|
||||
#define VARIANT2_2_PORTABLE() \
|
||||
if (variant >= 2) { \
|
||||
if (variant == 2 || variant == 3) { \
|
||||
xor_blocks(long_state + (j ^ 0x10), d); \
|
||||
xor_blocks(d, long_state + (j ^ 0x20)); \
|
||||
}
|
||||
|
||||
#define VARIANT2_2() \
|
||||
do if (variant >= 2) \
|
||||
do if (variant == 2 || variant == 3) \
|
||||
{ \
|
||||
*U64(hp_state + (j ^ 0x10)) ^= SWAP64LE(hi); \
|
||||
*(U64(hp_state + (j ^ 0x10)) + 1) ^= SWAP64LE(lo); \
|
||||
|
@ -214,6 +241,58 @@ extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *ex
|
|||
lo ^= SWAP64LE(*(U64(hp_state + (j ^ 0x20)) + 1)); \
|
||||
} while (0)
|
||||
|
||||
#define V4_REG_LOAD(dst, src) \
|
||||
do { \
|
||||
memcpy((dst), (src), sizeof(v4_reg)); \
|
||||
if (sizeof(v4_reg) == sizeof(uint32_t)) \
|
||||
*(dst) = SWAP32LE(*(dst)); \
|
||||
else \
|
||||
*(dst) = SWAP64LE(*(dst)); \
|
||||
} while (0)
|
||||
|
||||
#define VARIANT4_RANDOM_MATH_INIT() \
|
||||
v4_reg r[9]; \
|
||||
struct V4_Instruction code[NUM_INSTRUCTIONS_MAX + 1]; \
|
||||
do if (variant >= 4) \
|
||||
{ \
|
||||
for (int i = 0; i < 4; ++i) \
|
||||
V4_REG_LOAD(r + i, (uint8_t*)(state.hs.w + 12) + sizeof(v4_reg) * i); \
|
||||
v4_random_math_init(code, height); \
|
||||
} while (0)
|
||||
|
||||
#define VARIANT4_RANDOM_MATH(a, b, r, _b, _b1) \
|
||||
do if (variant >= 4) \
|
||||
{ \
|
||||
uint64_t t[2]; \
|
||||
memcpy(t, b, sizeof(uint64_t)); \
|
||||
\
|
||||
if (sizeof(v4_reg) == sizeof(uint32_t)) \
|
||||
t[0] ^= SWAP64LE((r[0] + r[1]) | ((uint64_t)(r[2] + r[3]) << 32)); \
|
||||
else \
|
||||
t[0] ^= SWAP64LE((r[0] + r[1]) ^ (r[2] + r[3])); \
|
||||
\
|
||||
memcpy(b, t, sizeof(uint64_t)); \
|
||||
\
|
||||
V4_REG_LOAD(r + 4, a); \
|
||||
V4_REG_LOAD(r + 5, (uint64_t*)(a) + 1); \
|
||||
V4_REG_LOAD(r + 6, _b); \
|
||||
V4_REG_LOAD(r + 7, _b1); \
|
||||
V4_REG_LOAD(r + 8, (uint64_t*)(_b1) + 1); \
|
||||
\
|
||||
v4_random_math(code, r); \
|
||||
\
|
||||
memcpy(t, a, sizeof(uint64_t) * 2); \
|
||||
\
|
||||
if (sizeof(v4_reg) == sizeof(uint32_t)) { \
|
||||
t[0] ^= SWAP64LE(r[2] | ((uint64_t)(r[3]) << 32)); \
|
||||
t[1] ^= SWAP64LE(r[0] | ((uint64_t)(r[1]) << 32)); \
|
||||
} else { \
|
||||
t[0] ^= SWAP64LE(r[2] ^ r[3]); \
|
||||
t[1] ^= SWAP64LE(r[0] ^ r[1]); \
|
||||
} \
|
||||
memcpy(a, t, sizeof(uint64_t) * 2); \
|
||||
} while (0)
|
||||
|
||||
|
||||
#if !defined NO_AES && (defined(__x86_64__) || (defined(_MSC_VER) && defined(_WIN64)))
|
||||
// Optimised code below, uses x86-specific intrinsics, SSE2, AES-NI
|
||||
|
@ -298,6 +377,7 @@ extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *ex
|
|||
p = U64(&hp_state[j]); \
|
||||
b[0] = p[0]; b[1] = p[1]; \
|
||||
VARIANT2_INTEGER_MATH_SSE2(b, c); \
|
||||
VARIANT4_RANDOM_MATH(a, b, r, &_b, &_b1); \
|
||||
__mul(); \
|
||||
VARIANT2_2(); \
|
||||
VARIANT2_SHUFFLE_ADD_SSE2(hp_state, j); \
|
||||
|
@ -694,7 +774,7 @@ void slow_hash_free_state(void)
|
|||
* @param length the length in bytes of the data
|
||||
* @param hash a pointer to a buffer in which the final 256 bit hash will be stored
|
||||
*/
|
||||
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed)
|
||||
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed, uint64_t height)
|
||||
{
|
||||
RDATA_ALIGN16 uint8_t expandedKey[240]; /* These buffers are aligned to use later with SSE functions */
|
||||
|
||||
|
@ -730,6 +810,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
|
|||
|
||||
VARIANT1_INIT64();
|
||||
VARIANT2_INIT64();
|
||||
VARIANT4_RANDOM_MATH_INIT();
|
||||
|
||||
/* CryptoNight Step 2: Iteratively encrypt the results from Keccak to fill
|
||||
* the 2MB large random access buffer.
|
||||
|
@ -901,6 +982,7 @@ union cn_slow_hash_state
|
|||
p = U64(&hp_state[j]); \
|
||||
b[0] = p[0]; b[1] = p[1]; \
|
||||
VARIANT2_PORTABLE_INTEGER_MATH(b, c); \
|
||||
VARIANT4_RANDOM_MATH(a, b, r, &_b, &_b1); \
|
||||
__mul(); \
|
||||
VARIANT2_2(); \
|
||||
VARIANT2_SHUFFLE_ADD_NEON(hp_state, j); \
|
||||
|
@ -1063,7 +1145,7 @@ STATIC INLINE void aligned_free(void *ptr)
|
|||
}
|
||||
#endif /* FORCE_USE_HEAP */
|
||||
|
||||
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed)
|
||||
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed, uint64_t height)
|
||||
{
|
||||
RDATA_ALIGN16 uint8_t expandedKey[240];
|
||||
|
||||
|
@ -1100,6 +1182,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
|
|||
|
||||
VARIANT1_INIT64();
|
||||
VARIANT2_INIT64();
|
||||
VARIANT4_RANDOM_MATH_INIT();
|
||||
|
||||
/* CryptoNight Step 2: Iteratively encrypt the results from Keccak to fill
|
||||
* the 2MB large random access buffer.
|
||||
|
@ -1278,10 +1361,11 @@ STATIC INLINE void xor_blocks(uint8_t* a, const uint8_t* b)
|
|||
U64(a)[1] ^= U64(b)[1];
|
||||
}
|
||||
|
||||
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed)
|
||||
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed, uint64_t height)
|
||||
{
|
||||
uint8_t text[INIT_SIZE_BYTE];
|
||||
uint8_t a[AES_BLOCK_SIZE];
|
||||
uint8_t a1[AES_BLOCK_SIZE];
|
||||
uint8_t b[AES_BLOCK_SIZE * 2];
|
||||
uint8_t c[AES_BLOCK_SIZE];
|
||||
uint8_t c1[AES_BLOCK_SIZE];
|
||||
|
@ -1317,6 +1401,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
|
|||
|
||||
VARIANT1_INIT64();
|
||||
VARIANT2_INIT64();
|
||||
VARIANT4_RANDOM_MATH_INIT();
|
||||
|
||||
// use aligned data
|
||||
memcpy(expandedKey, aes_ctx->key->exp_data, aes_ctx->key->exp_data_len);
|
||||
|
@ -1340,10 +1425,10 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
|
|||
// Iteration 1
|
||||
j = state_index(a);
|
||||
p = &long_state[j];
|
||||
aesb_single_round(p, p, a);
|
||||
copy_block(c1, p);
|
||||
aesb_single_round(p, c1, a);
|
||||
|
||||
VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j);
|
||||
VARIANT2_PORTABLE_SHUFFLE_ADD(c1, a, long_state, j);
|
||||
copy_block(p, c1);
|
||||
xor_blocks(p, b);
|
||||
VARIANT1_1(p);
|
||||
|
||||
|
@ -1352,13 +1437,15 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
|
|||
p = &long_state[j];
|
||||
copy_block(c, p);
|
||||
|
||||
copy_block(a1, a);
|
||||
VARIANT2_PORTABLE_INTEGER_MATH(c, c1);
|
||||
VARIANT4_RANDOM_MATH(a1, c, r, b, b + AES_BLOCK_SIZE);
|
||||
mul(c1, c, d);
|
||||
VARIANT2_2_PORTABLE();
|
||||
VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j);
|
||||
sum_half_blocks(a, d);
|
||||
swap_blocks(a, c);
|
||||
xor_blocks(a, c);
|
||||
VARIANT2_PORTABLE_SHUFFLE_ADD(c1, a, long_state, j);
|
||||
sum_half_blocks(a1, d);
|
||||
swap_blocks(a1, c);
|
||||
xor_blocks(a1, c);
|
||||
VARIANT1_2(U64(c) + 1);
|
||||
copy_block(p, c);
|
||||
|
||||
|
@ -1366,6 +1453,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
|
|||
copy_block(b + AES_BLOCK_SIZE, b);
|
||||
}
|
||||
copy_block(b, c1);
|
||||
copy_block(a, a1);
|
||||
}
|
||||
|
||||
memcpy(text, state.init, INIT_SIZE_BYTE);
|
||||
|
@ -1476,7 +1564,7 @@ union cn_slow_hash_state {
|
|||
};
|
||||
#pragma pack(pop)
|
||||
|
||||
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed) {
|
||||
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed, uint64_t height) {
|
||||
#ifndef FORCE_USE_HEAP
|
||||
uint8_t long_state[MEMORY];
|
||||
#else
|
||||
|
@ -1486,6 +1574,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
|
|||
union cn_slow_hash_state state;
|
||||
uint8_t text[INIT_SIZE_BYTE];
|
||||
uint8_t a[AES_BLOCK_SIZE];
|
||||
uint8_t a1[AES_BLOCK_SIZE];
|
||||
uint8_t b[AES_BLOCK_SIZE * 2];
|
||||
uint8_t c1[AES_BLOCK_SIZE];
|
||||
uint8_t c2[AES_BLOCK_SIZE];
|
||||
|
@ -1505,6 +1594,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
|
|||
|
||||
VARIANT1_PORTABLE_INIT();
|
||||
VARIANT2_PORTABLE_INIT();
|
||||
VARIANT4_RANDOM_MATH_INIT();
|
||||
|
||||
oaes_key_import_data(aes_ctx, aes_key, AES_KEY_SIZE);
|
||||
for (i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) {
|
||||
|
@ -1528,7 +1618,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
|
|||
j = e2i(a, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE;
|
||||
copy_block(c1, &long_state[j]);
|
||||
aesb_single_round(c1, c1, a);
|
||||
VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j);
|
||||
VARIANT2_PORTABLE_SHUFFLE_ADD(c1, a, long_state, j);
|
||||
copy_block(&long_state[j], c1);
|
||||
xor_blocks(&long_state[j], b);
|
||||
assert(j == e2i(a, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE);
|
||||
|
@ -1536,22 +1626,22 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
|
|||
/* Iteration 2 */
|
||||
j = e2i(c1, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE;
|
||||
copy_block(c2, &long_state[j]);
|
||||
copy_block(a1, a);
|
||||
VARIANT2_PORTABLE_INTEGER_MATH(c2, c1);
|
||||
VARIANT4_RANDOM_MATH(a1, c2, r, b, b + AES_BLOCK_SIZE);
|
||||
mul(c1, c2, d);
|
||||
VARIANT2_2_PORTABLE();
|
||||
VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j);
|
||||
swap_blocks(a, c1);
|
||||
sum_half_blocks(c1, d);
|
||||
swap_blocks(c1, c2);
|
||||
xor_blocks(c1, c2);
|
||||
VARIANT2_PORTABLE_SHUFFLE_ADD(c1, a, long_state, j);
|
||||
sum_half_blocks(a1, d);
|
||||
swap_blocks(a1, c2);
|
||||
xor_blocks(a1, c2);
|
||||
VARIANT1_2(c2 + 8);
|
||||
copy_block(&long_state[j], c2);
|
||||
assert(j == e2i(a, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE);
|
||||
if (variant >= 2) {
|
||||
copy_block(b + AES_BLOCK_SIZE, b);
|
||||
}
|
||||
copy_block(b, a);
|
||||
copy_block(a, c1);
|
||||
copy_block(b, c1);
|
||||
copy_block(a, a1);
|
||||
}
|
||||
|
||||
memcpy(text, state.init, INIT_SIZE_BYTE);
|
||||
|
|
|
@ -0,0 +1,441 @@
|
|||
#ifndef VARIANT4_RANDOM_MATH_H
|
||||
#define VARIANT4_RANDOM_MATH_H
|
||||
|
||||
// Register size can be configured to either 32 bit (uint32_t) or 64 bit (uint64_t)
|
||||
typedef uint32_t v4_reg;
|
||||
|
||||
enum V4_Settings
|
||||
{
|
||||
// Generate code with minimal theoretical latency = 45 cycles, which is equivalent to 15 multiplications
|
||||
TOTAL_LATENCY = 15 * 3,
|
||||
|
||||
// Always generate at least 60 instructions
|
||||
NUM_INSTRUCTIONS_MIN = 60,
|
||||
|
||||
// Never generate more than 70 instructions (final RET instruction doesn't count here)
|
||||
NUM_INSTRUCTIONS_MAX = 70,
|
||||
|
||||
// Available ALUs for MUL
|
||||
// Modern CPUs typically have only 1 ALU which can do multiplications
|
||||
ALU_COUNT_MUL = 1,
|
||||
|
||||
// Total available ALUs
|
||||
// Modern CPUs have 4 ALUs, but we use only 3 because random math executes together with other main loop code
|
||||
ALU_COUNT = 3,
|
||||
};
|
||||
|
||||
enum V4_InstructionList
|
||||
{
|
||||
MUL, // a*b
|
||||
ADD, // a+b + C, C is an unsigned 32-bit constant
|
||||
SUB, // a-b
|
||||
ROR, // rotate right "a" by "b & 31" bits
|
||||
ROL, // rotate left "a" by "b & 31" bits
|
||||
XOR, // a^b
|
||||
RET, // finish execution
|
||||
V4_INSTRUCTION_COUNT = RET,
|
||||
};
|
||||
|
||||
// V4_InstructionDefinition is used to generate code from random data
|
||||
// Every random sequence of bytes is a valid code
|
||||
//
|
||||
// There are 9 registers in total:
|
||||
// - 4 variable registers
|
||||
// - 5 constant registers initialized from loop variables
|
||||
// This is why dst_index is 2 bits
|
||||
enum V4_InstructionDefinition
|
||||
{
|
||||
V4_OPCODE_BITS = 3,
|
||||
V4_DST_INDEX_BITS = 2,
|
||||
V4_SRC_INDEX_BITS = 3,
|
||||
};
|
||||
|
||||
struct V4_Instruction
|
||||
{
|
||||
uint8_t opcode;
|
||||
uint8_t dst_index;
|
||||
uint8_t src_index;
|
||||
uint32_t C;
|
||||
};
|
||||
|
||||
#ifndef FORCEINLINE
|
||||
#if defined(__GNUC__)
|
||||
#define FORCEINLINE __attribute__((always_inline)) inline
|
||||
#elif defined(_MSC_VER)
|
||||
#define FORCEINLINE __forceinline
|
||||
#else
|
||||
#define FORCEINLINE inline
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef UNREACHABLE_CODE
|
||||
#if defined(__GNUC__)
|
||||
#define UNREACHABLE_CODE __builtin_unreachable()
|
||||
#elif defined(_MSC_VER)
|
||||
#define UNREACHABLE_CODE __assume(false)
|
||||
#else
|
||||
#define UNREACHABLE_CODE
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// Random math interpreter's loop is fully unrolled and inlined to achieve 100% branch prediction on CPU:
|
||||
// every switch-case will point to the same destination on every iteration of Cryptonight main loop
|
||||
//
|
||||
// This is about as fast as it can get without using low-level machine code generation
|
||||
static FORCEINLINE void v4_random_math(const struct V4_Instruction* code, v4_reg* r)
|
||||
{
|
||||
enum
|
||||
{
|
||||
REG_BITS = sizeof(v4_reg) * 8,
|
||||
};
|
||||
|
||||
#define V4_EXEC(i) \
|
||||
{ \
|
||||
const struct V4_Instruction* op = code + i; \
|
||||
const v4_reg src = r[op->src_index]; \
|
||||
v4_reg* dst = r + op->dst_index; \
|
||||
switch (op->opcode) \
|
||||
{ \
|
||||
case MUL: \
|
||||
*dst *= src; \
|
||||
break; \
|
||||
case ADD: \
|
||||
*dst += src + op->C; \
|
||||
break; \
|
||||
case SUB: \
|
||||
*dst -= src; \
|
||||
break; \
|
||||
case ROR: \
|
||||
{ \
|
||||
const uint32_t shift = src % REG_BITS; \
|
||||
*dst = (*dst >> shift) | (*dst << ((REG_BITS - shift) % REG_BITS)); \
|
||||
} \
|
||||
break; \
|
||||
case ROL: \
|
||||
{ \
|
||||
const uint32_t shift = src % REG_BITS; \
|
||||
*dst = (*dst << shift) | (*dst >> ((REG_BITS - shift) % REG_BITS)); \
|
||||
} \
|
||||
break; \
|
||||
case XOR: \
|
||||
*dst ^= src; \
|
||||
break; \
|
||||
case RET: \
|
||||
return; \
|
||||
default: \
|
||||
UNREACHABLE_CODE; \
|
||||
break; \
|
||||
} \
|
||||
}
|
||||
|
||||
#define V4_EXEC_10(j) \
|
||||
V4_EXEC(j + 0) \
|
||||
V4_EXEC(j + 1) \
|
||||
V4_EXEC(j + 2) \
|
||||
V4_EXEC(j + 3) \
|
||||
V4_EXEC(j + 4) \
|
||||
V4_EXEC(j + 5) \
|
||||
V4_EXEC(j + 6) \
|
||||
V4_EXEC(j + 7) \
|
||||
V4_EXEC(j + 8) \
|
||||
V4_EXEC(j + 9)
|
||||
|
||||
// Generated program can have 60 + a few more (usually 2-3) instructions to achieve required latency
|
||||
// I've checked all block heights < 10,000,000 and here is the distribution of program sizes:
|
||||
//
|
||||
// 60 27960
|
||||
// 61 105054
|
||||
// 62 2452759
|
||||
// 63 5115997
|
||||
// 64 1022269
|
||||
// 65 1109635
|
||||
// 66 153145
|
||||
// 67 8550
|
||||
// 68 4529
|
||||
// 69 102
|
||||
|
||||
// Unroll 70 instructions here
|
||||
V4_EXEC_10(0); // instructions 0-9
|
||||
V4_EXEC_10(10); // instructions 10-19
|
||||
V4_EXEC_10(20); // instructions 20-29
|
||||
V4_EXEC_10(30); // instructions 30-39
|
||||
V4_EXEC_10(40); // instructions 40-49
|
||||
V4_EXEC_10(50); // instructions 50-59
|
||||
V4_EXEC_10(60); // instructions 60-69
|
||||
|
||||
#undef V4_EXEC_10
|
||||
#undef V4_EXEC
|
||||
}
|
||||
|
||||
// If we don't have enough data available, generate more
|
||||
static FORCEINLINE void check_data(size_t* data_index, const size_t bytes_needed, int8_t* data, const size_t data_size)
|
||||
{
|
||||
if (*data_index + bytes_needed > data_size)
|
||||
{
|
||||
hash_extra_blake(data, data_size, (char*) data);
|
||||
*data_index = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// Generates as many random math operations as possible with given latency and ALU restrictions
|
||||
// "code" array must have space for NUM_INSTRUCTIONS_MAX+1 instructions
|
||||
static inline int v4_random_math_init(struct V4_Instruction* code, const uint64_t height)
|
||||
{
|
||||
// MUL is 3 cycles, 3-way addition and rotations are 2 cycles, SUB/XOR are 1 cycle
|
||||
// These latencies match real-life instruction latencies for Intel CPUs starting from Sandy Bridge and up to Skylake/Coffee lake
|
||||
//
|
||||
// AMD Ryzen has the same latencies except 1-cycle ROR/ROL, so it'll be a bit faster than Intel Sandy Bridge and newer processors
|
||||
// Surprisingly, Intel Nehalem also has 1-cycle ROR/ROL, so it'll also be faster than Intel Sandy Bridge and newer processors
|
||||
// AMD Bulldozer has 4 cycles latency for MUL (slower than Intel) and 1 cycle for ROR/ROL (faster than Intel), so average performance will be the same
|
||||
// Source: https://www.agner.org/optimize/instruction_tables.pdf
|
||||
const int op_latency[V4_INSTRUCTION_COUNT] = { 3, 2, 1, 2, 2, 1 };
|
||||
|
||||
// Instruction latencies for theoretical ASIC implementation
|
||||
const int asic_op_latency[V4_INSTRUCTION_COUNT] = { 3, 1, 1, 1, 1, 1 };
|
||||
|
||||
// Available ALUs for each instruction
|
||||
const int op_ALUs[V4_INSTRUCTION_COUNT] = { ALU_COUNT_MUL, ALU_COUNT, ALU_COUNT, ALU_COUNT, ALU_COUNT, ALU_COUNT };
|
||||
|
||||
int8_t data[32];
|
||||
memset(data, 0, sizeof(data));
|
||||
uint64_t tmp = SWAP64LE(height);
|
||||
memcpy(data, &tmp, sizeof(uint64_t));
|
||||
data[20] = -38; // change seed
|
||||
|
||||
// Set data_index past the last byte in data
|
||||
// to trigger full data update with blake hash
|
||||
// before we start using it
|
||||
size_t data_index = sizeof(data);
|
||||
|
||||
int code_size;
|
||||
|
||||
// There is a small chance (1.8%) that register R8 won't be used in the generated program
|
||||
// So we keep track of it and try again if it's not used
|
||||
bool r8_used;
|
||||
do {
|
||||
int latency[9];
|
||||
int asic_latency[9];
|
||||
|
||||
// Tracks previous instruction and value of the source operand for registers R0-R3 throughout code execution
|
||||
// byte 0: current value of the destination register
|
||||
// byte 1: instruction opcode
|
||||
// byte 2: current value of the source register
|
||||
//
|
||||
// Registers R4-R8 are constant and are treated as having the same value because when we do
|
||||
// the same operation twice with two constant source registers, it can be optimized into a single operation
|
||||
uint32_t inst_data[9] = { 0, 1, 2, 3, 0xFFFFFF, 0xFFFFFF, 0xFFFFFF, 0xFFFFFF, 0xFFFFFF };
|
||||
|
||||
bool alu_busy[TOTAL_LATENCY + 1][ALU_COUNT];
|
||||
bool is_rotation[V4_INSTRUCTION_COUNT];
|
||||
bool rotated[4];
|
||||
int rotate_count = 0;
|
||||
|
||||
memset(latency, 0, sizeof(latency));
|
||||
memset(asic_latency, 0, sizeof(asic_latency));
|
||||
memset(alu_busy, 0, sizeof(alu_busy));
|
||||
memset(is_rotation, 0, sizeof(is_rotation));
|
||||
memset(rotated, 0, sizeof(rotated));
|
||||
is_rotation[ROR] = true;
|
||||
is_rotation[ROL] = true;
|
||||
|
||||
int num_retries = 0;
|
||||
code_size = 0;
|
||||
|
||||
int total_iterations = 0;
|
||||
r8_used = false;
|
||||
|
||||
// Generate random code to achieve minimal required latency for our abstract CPU
|
||||
// Try to get this latency for all 4 registers
|
||||
while (((latency[0] < TOTAL_LATENCY) || (latency[1] < TOTAL_LATENCY) || (latency[2] < TOTAL_LATENCY) || (latency[3] < TOTAL_LATENCY)) && (num_retries < 64))
|
||||
{
|
||||
// Fail-safe to guarantee loop termination
|
||||
++total_iterations;
|
||||
if (total_iterations > 256)
|
||||
break;
|
||||
|
||||
check_data(&data_index, 1, data, sizeof(data));
|
||||
|
||||
const uint8_t c = ((uint8_t*)data)[data_index++];
|
||||
|
||||
// MUL = opcodes 0-2
|
||||
// ADD = opcode 3
|
||||
// SUB = opcode 4
|
||||
// ROR/ROL = opcode 5, shift direction is selected randomly
|
||||
// XOR = opcodes 6-7
|
||||
uint8_t opcode = c & ((1 << V4_OPCODE_BITS) - 1);
|
||||
if (opcode == 5)
|
||||
{
|
||||
check_data(&data_index, 1, data, sizeof(data));
|
||||
opcode = (data[data_index++] >= 0) ? ROR : ROL;
|
||||
}
|
||||
else if (opcode >= 6)
|
||||
{
|
||||
opcode = XOR;
|
||||
}
|
||||
else
|
||||
{
|
||||
opcode = (opcode <= 2) ? MUL : (opcode - 2);
|
||||
}
|
||||
|
||||
uint8_t dst_index = (c >> V4_OPCODE_BITS) & ((1 << V4_DST_INDEX_BITS) - 1);
|
||||
uint8_t src_index = (c >> (V4_OPCODE_BITS + V4_DST_INDEX_BITS)) & ((1 << V4_SRC_INDEX_BITS) - 1);
|
||||
|
||||
const int a = dst_index;
|
||||
int b = src_index;
|
||||
|
||||
// Don't do ADD/SUB/XOR with the same register
|
||||
if (((opcode == ADD) || (opcode == SUB) || (opcode == XOR)) && (a == b))
|
||||
{
|
||||
// Use register R8 as source instead
|
||||
b = 8;
|
||||
src_index = 8;
|
||||
}
|
||||
|
||||
// Don't do rotation with the same destination twice because it's equal to a single rotation
|
||||
if (is_rotation[opcode] && rotated[a])
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
// Don't do the same instruction (except MUL) with the same source value twice because all other cases can be optimized:
|
||||
// 2xADD(a, b, C) = ADD(a, b*2, C1+C2), same for SUB and rotations
|
||||
// 2xXOR(a, b) = NOP
|
||||
if ((opcode != MUL) && ((inst_data[a] & 0xFFFF00) == (opcode << 8) + ((inst_data[b] & 255) << 16)))
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
// Find which ALU is available (and when) for this instruction
|
||||
int next_latency = (latency[a] > latency[b]) ? latency[a] : latency[b];
|
||||
int alu_index = -1;
|
||||
while (next_latency < TOTAL_LATENCY)
|
||||
{
|
||||
for (int i = op_ALUs[opcode] - 1; i >= 0; --i)
|
||||
{
|
||||
if (!alu_busy[next_latency][i])
|
||||
{
|
||||
// ADD is implemented as two 1-cycle instructions on a real CPU, so do an additional availability check
|
||||
if ((opcode == ADD) && alu_busy[next_latency + 1][i])
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
// Rotation can only start when previous rotation is finished, so do an additional availability check
|
||||
if (is_rotation[opcode] && (next_latency < rotate_count * op_latency[opcode]))
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
alu_index = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (alu_index >= 0)
|
||||
{
|
||||
break;
|
||||
}
|
||||
++next_latency;
|
||||
}
|
||||
|
||||
// Don't generate instructions that leave some register unchanged for more than 7 cycles
|
||||
if (next_latency > latency[a] + 7)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
next_latency += op_latency[opcode];
|
||||
|
||||
if (next_latency <= TOTAL_LATENCY)
|
||||
{
|
||||
if (is_rotation[opcode])
|
||||
{
|
||||
++rotate_count;
|
||||
}
|
||||
|
||||
// Mark ALU as busy only for the first cycle when it starts executing the instruction because ALUs are fully pipelined
|
||||
alu_busy[next_latency - op_latency[opcode]][alu_index] = true;
|
||||
latency[a] = next_latency;
|
||||
|
||||
// ASIC is supposed to have enough ALUs to run as many independent instructions per cycle as possible, so latency calculation for ASIC is simple
|
||||
asic_latency[a] = ((asic_latency[a] > asic_latency[b]) ? asic_latency[a] : asic_latency[b]) + asic_op_latency[opcode];
|
||||
|
||||
rotated[a] = is_rotation[opcode];
|
||||
|
||||
inst_data[a] = code_size + (opcode << 8) + ((inst_data[b] & 255) << 16);
|
||||
|
||||
code[code_size].opcode = opcode;
|
||||
code[code_size].dst_index = dst_index;
|
||||
code[code_size].src_index = src_index;
|
||||
code[code_size].C = 0;
|
||||
|
||||
if (src_index == 8)
|
||||
{
|
||||
r8_used = true;
|
||||
}
|
||||
|
||||
if (opcode == ADD)
|
||||
{
|
||||
// ADD instruction is implemented as two 1-cycle instructions on a real CPU, so mark ALU as busy for the next cycle too
|
||||
alu_busy[next_latency - op_latency[opcode] + 1][alu_index] = true;
|
||||
|
||||
// ADD instruction requires 4 more random bytes for 32-bit constant "C" in "a = a + b + C"
|
||||
check_data(&data_index, sizeof(uint32_t), data, sizeof(data));
|
||||
uint32_t t;
|
||||
memcpy(&t, data + data_index, sizeof(uint32_t));
|
||||
code[code_size].C = SWAP32LE(t);
|
||||
data_index += sizeof(uint32_t);
|
||||
}
|
||||
|
||||
++code_size;
|
||||
if (code_size >= NUM_INSTRUCTIONS_MIN)
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
++num_retries;
|
||||
}
|
||||
}
|
||||
|
||||
// ASIC has more execution resources and can extract as much parallelism from the code as possible
|
||||
// We need to add a few more MUL and ROR instructions to achieve minimal required latency for ASIC
|
||||
// Get this latency for at least 1 of the 4 registers
|
||||
const int prev_code_size = code_size;
|
||||
while ((code_size < NUM_INSTRUCTIONS_MAX) && (asic_latency[0] < TOTAL_LATENCY) && (asic_latency[1] < TOTAL_LATENCY) && (asic_latency[2] < TOTAL_LATENCY) && (asic_latency[3] < TOTAL_LATENCY))
|
||||
{
|
||||
int min_idx = 0;
|
||||
int max_idx = 0;
|
||||
for (int i = 1; i < 4; ++i)
|
||||
{
|
||||
if (asic_latency[i] < asic_latency[min_idx]) min_idx = i;
|
||||
if (asic_latency[i] > asic_latency[max_idx]) max_idx = i;
|
||||
}
|
||||
|
||||
const uint8_t pattern[3] = { ROR, MUL, MUL };
|
||||
const uint8_t opcode = pattern[(code_size - prev_code_size) % 3];
|
||||
latency[min_idx] = latency[max_idx] + op_latency[opcode];
|
||||
asic_latency[min_idx] = asic_latency[max_idx] + asic_op_latency[opcode];
|
||||
|
||||
code[code_size].opcode = opcode;
|
||||
code[code_size].dst_index = min_idx;
|
||||
code[code_size].src_index = max_idx;
|
||||
code[code_size].C = 0;
|
||||
++code_size;
|
||||
}
|
||||
|
||||
// There is ~98.15% chance that loop condition is false, so this loop will execute only 1 iteration most of the time
|
||||
// It never does more than 4 iterations for all block heights < 10,000,000
|
||||
} while (!r8_used || (code_size < NUM_INSTRUCTIONS_MIN) || (code_size > NUM_INSTRUCTIONS_MAX));
|
||||
|
||||
// It's guaranteed that NUM_INSTRUCTIONS_MIN <= code_size <= NUM_INSTRUCTIONS_MAX here
|
||||
// Add final instruction to stop the interpreter
|
||||
code[code_size].opcode = RET;
|
||||
code[code_size].dst_index = 0;
|
||||
code[code_size].src_index = 0;
|
||||
code[code_size].C = 0;
|
||||
|
||||
return code_size;
|
||||
}
|
||||
|
||||
#endif
|
|
@ -1174,7 +1174,7 @@ namespace cryptonote
|
|||
}
|
||||
blobdata bd = get_block_hashing_blob(b);
|
||||
const int cn_variant = b.major_version >= 7 ? b.major_version - 6 : 0;
|
||||
crypto::cn_slow_hash(bd.data(), bd.size(), res, cn_variant);
|
||||
crypto::cn_slow_hash(bd.data(), bd.size(), res, cn_variant, height);
|
||||
return true;
|
||||
}
|
||||
//---------------------------------------------------------------
|
||||
|
|
|
@ -43,7 +43,7 @@ set_property(TARGET hash-tests
|
|||
PROPERTY
|
||||
FOLDER "tests")
|
||||
|
||||
foreach (hash IN ITEMS fast slow slow-1 slow-2 tree extra-blake extra-groestl extra-jh extra-skein)
|
||||
foreach (hash IN ITEMS fast slow slow-1 slow-2 slow-4 tree extra-blake extra-groestl extra-jh extra-skein)
|
||||
add_test(
|
||||
NAME "hash-${hash}"
|
||||
COMMAND hash-tests "${hash}" "${CMAKE_CURRENT_SOURCE_DIR}/tests-${hash}.txt")
|
||||
|
|
|
@ -44,6 +44,13 @@ using namespace std;
|
|||
using namespace crypto;
|
||||
typedef crypto::hash chash;
|
||||
|
||||
struct V4_Data
|
||||
{
|
||||
const void* data;
|
||||
size_t length;
|
||||
uint64_t height;
|
||||
};
|
||||
|
||||
PUSH_WARNINGS
|
||||
DISABLE_VS_WARNINGS(4297)
|
||||
extern "C" {
|
||||
|
@ -54,13 +61,17 @@ extern "C" {
|
|||
tree_hash((const char (*)[crypto::HASH_SIZE]) data, length >> 5, hash);
|
||||
}
|
||||
static void cn_slow_hash_0(const void *data, size_t length, char *hash) {
|
||||
return cn_slow_hash(data, length, hash, 0/*variant*/, 0/*prehashed*/);
|
||||
return cn_slow_hash(data, length, hash, 0/*variant*/, 0/*prehashed*/, 0/*height*/);
|
||||
}
|
||||
static void cn_slow_hash_1(const void *data, size_t length, char *hash) {
|
||||
return cn_slow_hash(data, length, hash, 1/*variant*/, 0/*prehashed*/);
|
||||
return cn_slow_hash(data, length, hash, 1/*variant*/, 0/*prehashed*/, 0/*height*/);
|
||||
}
|
||||
static void cn_slow_hash_2(const void *data, size_t length, char *hash) {
|
||||
return cn_slow_hash(data, length, hash, 2/*variant*/, 0/*prehashed*/);
|
||||
return cn_slow_hash(data, length, hash, 2/*variant*/, 0/*prehashed*/, 0/*height*/);
|
||||
}
|
||||
static void cn_slow_hash_4(const void *data, size_t, char *hash) {
|
||||
const V4_Data* p = reinterpret_cast<const V4_Data*>(data);
|
||||
return cn_slow_hash(p->data, p->length, hash, 4/*variant*/, 0/*prehashed*/, p->height);
|
||||
}
|
||||
}
|
||||
POP_WARNINGS
|
||||
|
@ -72,7 +83,7 @@ struct hash_func {
|
|||
} hashes[] = {{"fast", cn_fast_hash}, {"slow", cn_slow_hash_0}, {"tree", hash_tree},
|
||||
{"extra-blake", hash_extra_blake}, {"extra-groestl", hash_extra_groestl},
|
||||
{"extra-jh", hash_extra_jh}, {"extra-skein", hash_extra_skein},
|
||||
{"slow-1", cn_slow_hash_1}, {"slow-2", cn_slow_hash_2}};
|
||||
{"slow-1", cn_slow_hash_1}, {"slow-2", cn_slow_hash_2}, {"slow-4", cn_slow_hash_4}};
|
||||
|
||||
int test_variant2_int_sqrt();
|
||||
int test_variant2_int_sqrt_ref();
|
||||
|
@ -140,7 +151,15 @@ int main(int argc, char *argv[]) {
|
|||
input.exceptions(ios_base::badbit | ios_base::failbit | ios_base::eofbit);
|
||||
input.clear(input.rdstate());
|
||||
get(input, data);
|
||||
f(data.data(), data.size(), (char *) &actual);
|
||||
if (f == cn_slow_hash_4) {
|
||||
V4_Data d;
|
||||
d.data = data.data();
|
||||
d.length = data.size();
|
||||
get(input, d.height);
|
||||
f(&d, 0, (char *) &actual);
|
||||
} else {
|
||||
f(data.data(), data.size(), (char *) &actual);
|
||||
}
|
||||
if (expected != actual) {
|
||||
size_t i;
|
||||
cerr << "Hash mismatch on test " << test << endl << "Input: ";
|
||||
|
|
|
@ -0,0 +1,10 @@
|
|||
f759588ad57e758467295443a9bd71490abff8e9dad1b95b6bf2f5d0d78387bc 5468697320697320612074657374205468697320697320612074657374205468697320697320612074657374 1806260
|
||||
5bb833deca2bdd7252a9ccd7b4ce0b6a4854515794b56c207262f7a5b9bdb566 4c6f72656d20697073756d20646f6c6f722073697420616d65742c20636f6e73656374657475722061646970697363696e67 1806261
|
||||
1ee6728da60fbd8d7d55b2b1ade487a3cf52a2c3ac6f520db12c27d8921f6cab 656c69742c2073656420646f20656975736d6f642074656d706f7220696e6369646964756e74207574206c61626f7265 1806262
|
||||
6969fe2ddfb758438d48049f302fc2108a4fcc93e37669170e6db4b0b9b4c4cb 657420646f6c6f7265206d61676e6120616c697175612e20557420656e696d206164206d696e696d2076656e69616d2c 1806263
|
||||
7f3048b4e90d0cbe7a57c0394f37338a01fae3adfdc0e5126d863a895eb04e02 71756973206e6f737472756420657865726369746174696f6e20756c6c616d636f206c61626f726973206e697369 1806264
|
||||
1d290443a4b542af04a82f6b2494a6ee7f20f2754c58e0849032483a56e8e2ef 757420616c697175697020657820656120636f6d6d6f646f20636f6e7365717561742e20447569732061757465 1806265
|
||||
c43cc6567436a86afbd6aa9eaa7c276e9806830334b614b2bee23cc76634f6fd 697275726520646f6c6f7220696e20726570726568656e646572697420696e20766f6c7570746174652076656c6974 1806266
|
||||
87be2479c0c4e8edfdfaa5603e93f4265b3f8224c1c5946feb424819d18990a4 657373652063696c6c756d20646f6c6f726520657520667567696174206e756c6c612070617269617475722e 1806267
|
||||
dd9d6a6d8e47465cceac0877ef889b93e7eba979557e3935d7f86dce11b070f3 4578636570746575722073696e74206f6363616563617420637570696461746174206e6f6e2070726f6964656e742c 1806268
|
||||
75c6f2ae49a20521de97285b431e717125847fb8935ed84a61e7f8d36a2c3d8e 73756e7420696e2063756c706120717569206f666669636961206465736572756e74206d6f6c6c697420616e696d20696420657374206c61626f72756d2e 1806269
|
Loading…
Reference in New Issue