Update slow-hash.c
1. Added AES-NI support for modern processors.
This commit is contained in:
parent
3b887decca
commit
44f61c3965
|
@ -11,52 +11,93 @@
|
||||||
#include "hash-ops.h"
|
#include "hash-ops.h"
|
||||||
#include "oaes_lib.h"
|
#include "oaes_lib.h"
|
||||||
|
|
||||||
static void (*const extra_hashes[4])(const void *, size_t, char *) = {
|
#include <emmintrin.h>
|
||||||
hash_extra_blake, hash_extra_groestl, hash_extra_jh, hash_extra_skein
|
|
||||||
};
|
|
||||||
|
|
||||||
#define MEMORY (1 << 21) /* 2 MiB */
|
#if defined(_MSC_VER) || defined(__INTEL_COMPILER)
|
||||||
|
#include <intrin.h>
|
||||||
|
#define STATIC
|
||||||
|
#define INLINE __inline
|
||||||
|
#if !defined(RDATA_ALIGN16)
|
||||||
|
#define RDATA_ALIGN16 __declspec(align(16))
|
||||||
|
#endif
|
||||||
|
#else
|
||||||
|
#include <wmmintrin.h>
|
||||||
|
#define STATIC static
|
||||||
|
#define INLINE inline
|
||||||
|
#if !defined(RDATA_ALIGN16)
|
||||||
|
#define RDATA_ALIGN16 __attribute__ ((aligned(16)))
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#define MEMORY (1 << 21) // 2MB scratchpad
|
||||||
#define ITER (1 << 20)
|
#define ITER (1 << 20)
|
||||||
#define AES_BLOCK_SIZE 16
|
#define AES_BLOCK_SIZE 16
|
||||||
#define AES_KEY_SIZE 32 /*16*/
|
#define AES_KEY_SIZE 32
|
||||||
#define INIT_SIZE_BLK 8
|
#define INIT_SIZE_BLK 8
|
||||||
#define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE)
|
#define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE)
|
||||||
|
|
||||||
|
#define U64(x) ((uint64_t *) (x))
|
||||||
|
#define R128(x) ((__m128i *) (x))
|
||||||
|
|
||||||
extern int aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expandedKey);
|
extern int aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expandedKey);
|
||||||
extern int aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey);
|
extern int aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey);
|
||||||
|
|
||||||
static size_t e2i(const uint8_t* a, size_t count) { return (*((uint64_t*)a) / AES_BLOCK_SIZE) & (count - 1); }
|
#pragma pack(push, 1)
|
||||||
|
union cn_slow_hash_state
|
||||||
|
{
|
||||||
|
union hash_state hs;
|
||||||
|
struct
|
||||||
|
{
|
||||||
|
uint8_t k[64];
|
||||||
|
uint8_t init[INIT_SIZE_BYTE];
|
||||||
|
};
|
||||||
|
};
|
||||||
|
#pragma pack(pop)
|
||||||
|
|
||||||
static void mul(const uint8_t* a, const uint8_t* b, uint8_t* res) {
|
#if defined(_MSC_VER) || defined(__INTEL_COMPILER)
|
||||||
|
#define cpuid(info,x) __cpuidex(info,x,0)
|
||||||
|
#else
|
||||||
|
void cpuid(int CPUInfo[4], int InfoType)
|
||||||
|
{
|
||||||
|
__asm__ __volatile__
|
||||||
|
(
|
||||||
|
"cpuid":
|
||||||
|
"=a" (CPUInfo[0]),
|
||||||
|
"=b" (CPUInfo[1]),
|
||||||
|
"=c" (CPUInfo[2]),
|
||||||
|
"=d" (CPUInfo[3]) :
|
||||||
|
"a" (InfoType), "c" (0)
|
||||||
|
);
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
STATIC INLINE void mul(const uint8_t *a, const uint8_t *b, uint8_t *res)
|
||||||
|
{
|
||||||
uint64_t a0, b0;
|
uint64_t a0, b0;
|
||||||
uint64_t hi, lo;
|
uint64_t hi, lo;
|
||||||
|
|
||||||
a0 = SWAP64LE(((uint64_t*)a)[0]);
|
a0 = U64(a)[0];
|
||||||
b0 = SWAP64LE(((uint64_t*)b)[0]);
|
b0 = U64(b)[0];
|
||||||
lo = mul128(a0, b0, &hi);
|
lo = mul128(a0, b0, &hi);
|
||||||
((uint64_t*)res)[0] = SWAP64LE(hi);
|
U64(res)[0] = hi;
|
||||||
((uint64_t*)res)[1] = SWAP64LE(lo);
|
U64(res)[1] = lo;
|
||||||
}
|
}
|
||||||
|
|
||||||
static void sum_half_blocks(uint8_t* a, const uint8_t* b) {
|
STATIC INLINE void sum_half_blocks(uint8_t *a, const uint8_t *b)
|
||||||
|
{
|
||||||
uint64_t a0, a1, b0, b1;
|
uint64_t a0, a1, b0, b1;
|
||||||
|
a0 = U64(a)[0];
|
||||||
a0 = SWAP64LE(((uint64_t*)a)[0]);
|
a1 = U64(a)[1];
|
||||||
a1 = SWAP64LE(((uint64_t*)a)[1]);
|
b0 = U64(b)[0];
|
||||||
b0 = SWAP64LE(((uint64_t*)b)[0]);
|
b1 = U64(b)[1];
|
||||||
b1 = SWAP64LE(((uint64_t*)b)[1]);
|
|
||||||
a0 += b0;
|
a0 += b0;
|
||||||
a1 += b1;
|
a1 += b1;
|
||||||
((uint64_t*)a)[0] = SWAP64LE(a0);
|
U64(a)[0] = a0;
|
||||||
((uint64_t*)a)[1] = SWAP64LE(a1);
|
U64(a)[1] = a1;
|
||||||
}
|
|
||||||
#define U64(x) ((uint64_t *) (x))
|
|
||||||
|
|
||||||
static void copy_block(uint8_t* dst, const uint8_t* src) {
|
|
||||||
memcpy(dst, src, AES_BLOCK_SIZE);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
static void swap_blocks(uint8_t *a, uint8_t *b){
|
STATIC INLINE void swap_blocks(uint8_t *a, uint8_t *b)
|
||||||
|
{
|
||||||
uint64_t t[2];
|
uint64_t t[2];
|
||||||
U64(t)[0] = U64(a)[0];
|
U64(t)[0] = U64(a)[0];
|
||||||
U64(t)[1] = U64(a)[1];
|
U64(t)[1] = U64(a)[1];
|
||||||
|
@ -66,90 +107,155 @@ static void swap_blocks(uint8_t *a, uint8_t *b){
|
||||||
U64(b)[1] = U64(t)[1];
|
U64(b)[1] = U64(t)[1];
|
||||||
}
|
}
|
||||||
|
|
||||||
static void xor_blocks(uint8_t* a, const uint8_t* b) {
|
STATIC INLINE void xor_blocks(uint8_t *a, const uint8_t *b)
|
||||||
size_t i;
|
{
|
||||||
for (i = 0; i < AES_BLOCK_SIZE; i++) {
|
U64(a)[0] ^= U64(b)[0];
|
||||||
a[i] ^= b[i];
|
U64(a)[1] ^= U64(b)[1];
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
#pragma pack(push, 1)
|
STATIC INLINE int check_aes_hw(void)
|
||||||
union cn_slow_hash_state {
|
{
|
||||||
union hash_state hs;
|
int cpuid_results[4];
|
||||||
struct {
|
static int supported = -1;
|
||||||
uint8_t k[64];
|
|
||||||
uint8_t init[INIT_SIZE_BYTE];
|
|
||||||
};
|
|
||||||
};
|
|
||||||
#pragma pack(pop)
|
|
||||||
|
|
||||||
void cn_slow_hash(const void *data, size_t length, char *hash) {
|
if(supported >= 0)
|
||||||
|
return supported;
|
||||||
|
|
||||||
|
cpuid(cpuid_results,1);
|
||||||
|
return supported = cpuid_results[2] & (1 << 25);
|
||||||
|
}
|
||||||
|
|
||||||
|
STATIC INLINE void aesni_pseudo_round(const uint8_t *in, uint8_t *out,
|
||||||
|
const uint8_t *expandedKey)
|
||||||
|
{
|
||||||
|
__m128i *k = R128(expandedKey);
|
||||||
|
__m128i d;
|
||||||
|
|
||||||
|
d = _mm_loadu_si128(R128(in));
|
||||||
|
d = _mm_aesenc_si128(d, *R128(&k[0]));
|
||||||
|
d = _mm_aesenc_si128(d, *R128(&k[1]));
|
||||||
|
d = _mm_aesenc_si128(d, *R128(&k[2]));
|
||||||
|
d = _mm_aesenc_si128(d, *R128(&k[3]));
|
||||||
|
d = _mm_aesenc_si128(d, *R128(&k[4]));
|
||||||
|
d = _mm_aesenc_si128(d, *R128(&k[5]));
|
||||||
|
d = _mm_aesenc_si128(d, *R128(&k[6]));
|
||||||
|
d = _mm_aesenc_si128(d, *R128(&k[7]));
|
||||||
|
d = _mm_aesenc_si128(d, *R128(&k[8]));
|
||||||
|
d = _mm_aesenc_si128(d, *R128(&k[9]));
|
||||||
|
_mm_storeu_si128((R128(out)), d);
|
||||||
|
}
|
||||||
|
|
||||||
|
void cn_slow_hash(const void *data, size_t length, char *hash)
|
||||||
|
{
|
||||||
uint8_t long_state[MEMORY];
|
uint8_t long_state[MEMORY];
|
||||||
union cn_slow_hash_state state;
|
|
||||||
uint8_t text[INIT_SIZE_BYTE];
|
uint8_t text[INIT_SIZE_BYTE];
|
||||||
uint8_t a[AES_BLOCK_SIZE];
|
uint8_t a[AES_BLOCK_SIZE];
|
||||||
uint8_t b[AES_BLOCK_SIZE];
|
uint8_t b[AES_BLOCK_SIZE];
|
||||||
uint8_t c[AES_BLOCK_SIZE];
|
|
||||||
uint8_t d[AES_BLOCK_SIZE];
|
uint8_t d[AES_BLOCK_SIZE];
|
||||||
size_t i, j;
|
|
||||||
uint8_t aes_key[AES_KEY_SIZE];
|
uint8_t aes_key[AES_KEY_SIZE];
|
||||||
|
RDATA_ALIGN16 uint8_t expandedKey[256];
|
||||||
|
|
||||||
|
union cn_slow_hash_state state;
|
||||||
|
|
||||||
|
size_t i, j;
|
||||||
|
uint8_t *p = NULL;
|
||||||
oaes_ctx *aes_ctx;
|
oaes_ctx *aes_ctx;
|
||||||
|
|
||||||
|
int useAes = check_aes_hw();
|
||||||
|
static void (*const extra_hashes[4])(const void *, size_t, char *) =
|
||||||
|
{
|
||||||
|
hash_extra_blake, hash_extra_groestl, hash_extra_jh, hash_extra_skein
|
||||||
|
};
|
||||||
|
|
||||||
hash_process(&state.hs, data, length);
|
hash_process(&state.hs, data, length);
|
||||||
memcpy(text, state.init, INIT_SIZE_BYTE);
|
memcpy(text, state.init, INIT_SIZE_BYTE);
|
||||||
memcpy(aes_key, state.hs.b, AES_KEY_SIZE);
|
|
||||||
aes_ctx = (oaes_ctx *) oaes_alloc();
|
|
||||||
|
|
||||||
oaes_key_import_data(aes_ctx, aes_key, AES_KEY_SIZE);
|
aes_ctx = (oaes_ctx *) oaes_alloc();
|
||||||
for (i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) {
|
oaes_key_import_data(aes_ctx, state.hs.b, AES_KEY_SIZE);
|
||||||
for (j = 0; j < INIT_SIZE_BLK; j++) {
|
|
||||||
aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], aes_ctx->key->exp_data);
|
// use aligned data
|
||||||
}
|
memcpy(expandedKey, aes_ctx->key->exp_data, aes_ctx->key->exp_data_len);
|
||||||
|
|
||||||
|
if(useAes)
|
||||||
|
{
|
||||||
|
for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
|
||||||
|
{
|
||||||
|
for(j = 0; j < INIT_SIZE_BLK; j++)
|
||||||
|
aesni_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], expandedKey);
|
||||||
memcpy(&long_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
|
memcpy(&long_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
|
||||||
|
{
|
||||||
|
for(j = 0; j < INIT_SIZE_BLK; j++)
|
||||||
|
aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], expandedKey);
|
||||||
|
|
||||||
for (i = 0; i < 16; i++) {
|
memcpy(&long_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
|
||||||
a[i] = state.k[ i] ^ state.k[32 + i];
|
}
|
||||||
b[i] = state.k[16 + i] ^ state.k[48 + i];
|
|
||||||
}
|
}
|
||||||
|
|
||||||
for (i = 0; i < ITER / 2; i++) {
|
U64(a)[0] = U64(&state.k[0])[0] ^ U64(&state.k[32])[0];
|
||||||
/* Dependency chain: address -> read value ------+
|
U64(a)[1] = U64(&state.k[0])[1] ^ U64(&state.k[32])[1];
|
||||||
* written value <-+ hard function (AES or MUL) <+
|
U64(b)[0] = U64(&state.k[16])[0] ^ U64(&state.k[48])[0];
|
||||||
* next address <-+
|
U64(b)[1] = U64(&state.k[16])[1] ^ U64(&state.k[48])[1];
|
||||||
*/
|
|
||||||
/* Iteration 1 */
|
for(i = 0; i < ITER / 2; i++)
|
||||||
j = e2i(a, MEMORY / AES_BLOCK_SIZE);
|
{
|
||||||
copy_block(c, &long_state[j * AES_BLOCK_SIZE]);
|
#define TOTALBLOCKS (MEMORY / AES_BLOCK_SIZE)
|
||||||
aesb_single_round(c, c, a);
|
#define state_index(x) (((*((uint64_t *)x) >> 4) & (TOTALBLOCKS - 1)) << 4)
|
||||||
xor_blocks(b, c);
|
|
||||||
swap_blocks(b, c);
|
// Iteration 1
|
||||||
copy_block(&long_state[j * AES_BLOCK_SIZE], c);
|
p = &long_state[state_index(a)];
|
||||||
assert(j == e2i(a, MEMORY / AES_BLOCK_SIZE));
|
|
||||||
|
if(useAes)
|
||||||
|
_mm_storeu_si128(R128(p), _mm_aesenc_si128(_mm_loadu_si128(R128(p)), _mm_loadu_si128(R128(a))));
|
||||||
|
else
|
||||||
|
aesb_single_round(p, p, a);
|
||||||
|
|
||||||
|
xor_blocks(b, p);
|
||||||
|
swap_blocks(b, p);
|
||||||
swap_blocks(a, b);
|
swap_blocks(a, b);
|
||||||
/* Iteration 2 */
|
|
||||||
j = e2i(a, MEMORY / AES_BLOCK_SIZE);
|
// Iteration 2
|
||||||
copy_block(c, &long_state[j * AES_BLOCK_SIZE]);
|
p = &long_state[state_index(a)];
|
||||||
mul(a, c, d);
|
|
||||||
|
mul(a, p, d);
|
||||||
sum_half_blocks(b, d);
|
sum_half_blocks(b, d);
|
||||||
swap_blocks(b, c);
|
swap_blocks(b, p);
|
||||||
xor_blocks(b, c);
|
xor_blocks(b, p);
|
||||||
copy_block(&long_state[j * AES_BLOCK_SIZE], c);
|
|
||||||
assert(j == e2i(a, MEMORY / AES_BLOCK_SIZE));
|
|
||||||
swap_blocks(a, b);
|
swap_blocks(a, b);
|
||||||
}
|
}
|
||||||
|
|
||||||
memcpy(text, state.init, INIT_SIZE_BYTE);
|
memcpy(text, state.init, INIT_SIZE_BYTE);
|
||||||
oaes_key_import_data(aes_ctx, &state.hs.b[32], AES_KEY_SIZE);
|
oaes_key_import_data(aes_ctx, &state.hs.b[32], AES_KEY_SIZE);
|
||||||
for (i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) {
|
memcpy(expandedKey, aes_ctx->key->exp_data, aes_ctx->key->exp_data_len);
|
||||||
for (j = 0; j < INIT_SIZE_BLK; j++) {
|
if(useAes)
|
||||||
|
{
|
||||||
|
for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
|
||||||
|
{
|
||||||
|
for(j = 0; j < INIT_SIZE_BLK; j++)
|
||||||
|
{
|
||||||
xor_blocks(&text[j * AES_BLOCK_SIZE], &long_state[i * INIT_SIZE_BYTE + j * AES_BLOCK_SIZE]);
|
xor_blocks(&text[j * AES_BLOCK_SIZE], &long_state[i * INIT_SIZE_BYTE + j * AES_BLOCK_SIZE]);
|
||||||
aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], aes_ctx->key->exp_data);
|
aesni_pseudo_round(&text[j * AES_BLOCK_SIZE], &text[j * AES_BLOCK_SIZE], expandedKey);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
|
||||||
|
{
|
||||||
|
for(j = 0; j < INIT_SIZE_BLK; j++)
|
||||||
|
{
|
||||||
|
xor_blocks(&text[j * AES_BLOCK_SIZE], &long_state[i * INIT_SIZE_BYTE + j * AES_BLOCK_SIZE]);
|
||||||
|
aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], expandedKey);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
oaes_free((OAES_CTX **) &aes_ctx);
|
||||||
memcpy(state.init, text, INIT_SIZE_BYTE);
|
memcpy(state.init, text, INIT_SIZE_BYTE);
|
||||||
hash_permutation(&state.hs);
|
hash_permutation(&state.hs);
|
||||||
/*memcpy(hash, &state, 32);*/
|
|
||||||
extra_hashes[state.hs.b[0] & 3](&state, 200, hash);
|
extra_hashes[state.hs.b[0] & 3](&state, 200, hash);
|
||||||
oaes_free((OAES_CTX **) &aes_ctx);
|
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue