ARMv8: detect AES support dynamically

This commit is contained in:
Howard Chu 2021-10-09 21:26:19 +01:00
parent b58a9fb12e
commit 9973edd4c3
No known key found for this signature in database
GPG Key ID: FD2A70B44AB11BA7
1 changed files with 105 additions and 35 deletions

View File

@ -89,6 +89,28 @@ static inline int use_v4_jit(void)
#endif #endif
} }
#if defined(__x86_64__) || defined(__aarch64__)
static inline int force_software_aes(void)
{
static int use = -1;
if (use != -1)
return use;
const char *env = getenv("MONERO_USE_SOFTWARE_AES");
if (!env) {
use = 0;
}
else if (!strcmp(env, "0") || !strcmp(env, "no")) {
use = 0;
}
else {
use = 1;
}
return use;
}
#endif
#define VARIANT1_1(p) \ #define VARIANT1_1(p) \
do if (variant == 1) \ do if (variant == 1) \
{ \ { \
@ -498,25 +520,6 @@ STATIC INLINE void xor64(uint64_t *a, const uint64_t b)
* @return true if the CPU supports AES, false otherwise * @return true if the CPU supports AES, false otherwise
*/ */
STATIC INLINE int force_software_aes(void)
{
static int use = -1;
if (use != -1)
return use;
const char *env = getenv("MONERO_USE_SOFTWARE_AES");
if (!env) {
use = 0;
}
else if (!strcmp(env, "0") || !strcmp(env, "no")) {
use = 0;
}
else {
use = 1;
}
return use;
}
STATIC INLINE int check_aes_hw(void) STATIC INLINE int check_aes_hw(void)
{ {
@ -1060,6 +1063,23 @@ union cn_slow_hash_state
* and moving between vector and regular registers stalls the pipeline. * and moving between vector and regular registers stalls the pipeline.
*/ */
#include <arm_neon.h> #include <arm_neon.h>
#ifndef __APPLE__
#include <sys/auxv.h>
#include <asm/hwcap.h>
#endif
STATIC INLINE int check_aes_hw(void)
{
#ifdef __APPLE___
return 1;
#else
static int supported = -1;
if(supported < 0)
supported = (getauxval(AT_HWCAP) & HWCAP_AES) != 0;
return supported;
#endif
}
#define TOTALBLOCKS (MEMORY / AES_BLOCK_SIZE) #define TOTALBLOCKS (MEMORY / AES_BLOCK_SIZE)
@ -1156,7 +1176,6 @@ __asm__(
STATIC INLINE void aes_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey, int nblocks) STATIC INLINE void aes_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey, int nblocks)
{ {
const uint8x16_t *k = (const uint8x16_t *)expandedKey, zero = {0}; const uint8x16_t *k = (const uint8x16_t *)expandedKey, zero = {0};
uint8x16_t tmp;
int i; int i;
for (i=0; i<nblocks; i++) for (i=0; i<nblocks; i++)
@ -1191,7 +1210,6 @@ STATIC INLINE void aes_pseudo_round_xor(const uint8_t *in, uint8_t *out, const u
{ {
const uint8x16_t *k = (const uint8x16_t *)expandedKey; const uint8x16_t *k = (const uint8x16_t *)expandedKey;
const uint8x16_t *x = (const uint8x16_t *)xor; const uint8x16_t *x = (const uint8x16_t *)xor;
uint8x16_t tmp;
int i; int i;
for (i=0; i<nblocks; i++) for (i=0; i<nblocks; i++)
@ -1244,6 +1262,12 @@ STATIC INLINE void aligned_free(void *ptr)
} }
#endif /* FORCE_USE_HEAP */ #endif /* FORCE_USE_HEAP */
STATIC INLINE void xor_blocks(uint8_t* a, const uint8_t* b)
{
U64(a)[0] ^= U64(b)[0];
U64(a)[1] ^= U64(b)[1];
}
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed, uint64_t height) void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed, uint64_t height)
{ {
RDATA_ALIGN16 uint8_t expandedKey[240]; RDATA_ALIGN16 uint8_t expandedKey[240];
@ -1264,6 +1288,8 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
size_t i, j; size_t i, j;
uint64_t *p = NULL; uint64_t *p = NULL;
oaes_ctx *aes_ctx = NULL;
int useAes = !force_software_aes() && check_aes_hw();
static void (*const extra_hashes[4])(const void *, size_t, char *) = static void (*const extra_hashes[4])(const void *, size_t, char *) =
{ {
@ -1287,12 +1313,27 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
* the 2MB large random access buffer. * the 2MB large random access buffer.
*/ */
if(useAes)
{
aes_expand_key(state.hs.b, expandedKey); aes_expand_key(state.hs.b, expandedKey);
for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
{ {
aes_pseudo_round(text, text, expandedKey, INIT_SIZE_BLK); aes_pseudo_round(text, text, expandedKey, INIT_SIZE_BLK);
memcpy(&local_hp_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE); memcpy(&local_hp_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
} }
}
else
{
aes_ctx = (oaes_ctx *) oaes_alloc();
oaes_key_import_data(aes_ctx, state.hs.b, AES_KEY_SIZE);
for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
{
for(j = 0; j < INIT_SIZE_BLK; j++)
aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], aes_ctx->key->exp_data);
memcpy(&local_hp_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
}
}
U64(a)[0] = U64(&state.k[0])[0] ^ U64(&state.k[32])[0]; U64(a)[0] = U64(&state.k[0])[0] ^ U64(&state.k[32])[0];
U64(a)[1] = U64(&state.k[0])[1] ^ U64(&state.k[32])[1]; U64(a)[1] = U64(&state.k[0])[1] ^ U64(&state.k[32])[1];
@ -1307,6 +1348,8 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
_b = vld1q_u8((const uint8_t *)b); _b = vld1q_u8((const uint8_t *)b);
_b1 = vld1q_u8(((const uint8_t *)b) + AES_BLOCK_SIZE); _b1 = vld1q_u8(((const uint8_t *)b) + AES_BLOCK_SIZE);
if(useAes)
{
for(i = 0; i < ITER / 2; i++) for(i = 0; i < ITER / 2; i++)
{ {
pre_aes(); pre_aes();
@ -1315,6 +1358,17 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
_c = veorq_u8(_c, _a); _c = veorq_u8(_c, _a);
post_aes(); post_aes();
} }
}
else
{
for(i = 0; i < ITER / 2; i++)
{
pre_aes();
aesb_single_round((uint8_t *) &_c, (uint8_t *) &_c, (uint8_t *) &_a);
post_aes();
}
}
/* CryptoNight Step 4: Sequentially pass through the mixing buffer and use 10 rounds /* CryptoNight Step 4: Sequentially pass through the mixing buffer and use 10 rounds
* of AES encryption to mix the random data back into the 'text' buffer. 'text' * of AES encryption to mix the random data back into the 'text' buffer. 'text'
@ -1322,12 +1376,28 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
memcpy(text, state.init, INIT_SIZE_BYTE); memcpy(text, state.init, INIT_SIZE_BYTE);
if(useAes)
{
aes_expand_key(&state.hs.b[32], expandedKey); aes_expand_key(&state.hs.b[32], expandedKey);
for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
{ {
// add the xor to the pseudo round // add the xor to the pseudo round
aes_pseudo_round_xor(text, text, expandedKey, &local_hp_state[i * INIT_SIZE_BYTE], INIT_SIZE_BLK); aes_pseudo_round_xor(text, text, expandedKey, &local_hp_state[i * INIT_SIZE_BYTE], INIT_SIZE_BLK);
} }
}
else
{
oaes_key_import_data(aes_ctx, &state.hs.b[32], AES_KEY_SIZE);
for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
{
for(j = 0; j < INIT_SIZE_BLK; j++)
{
xor_blocks(&text[j * AES_BLOCK_SIZE], &local_hp_state[i * INIT_SIZE_BYTE + j * AES_BLOCK_SIZE]);
aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], aes_ctx->key->exp_data);
}
}
oaes_free((OAES_CTX **) &aes_ctx);
}
/* CryptoNight Step 5: Apply Keccak to the state again, and then /* CryptoNight Step 5: Apply Keccak to the state again, and then
* use the resulting data to select which of four finalizer * use the resulting data to select which of four finalizer