wownero/tests/gtest/src/gtest-port.cc

1240 lines
41 KiB
C++

// Copyright 2008, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
#include "gtest/internal/gtest-port.h"
#include <limits.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <fstream>
#if GTEST_OS_WINDOWS
# include <windows.h>
# include <io.h>
# include <sys/stat.h>
# include <map> // Used in ThreadLocal.
#else
# include <unistd.h>
#endif // GTEST_OS_WINDOWS
#if GTEST_OS_MAC
# include <mach/mach_init.h>
# include <mach/task.h>
# include <mach/vm_map.h>
#endif // GTEST_OS_MAC
#if GTEST_OS_QNX
# include <devctl.h>
# include <fcntl.h>
# include <sys/procfs.h>
#endif // GTEST_OS_QNX
#if GTEST_OS_AIX
# include <procinfo.h>
# include <sys/types.h>
#endif // GTEST_OS_AIX
#include "gtest/gtest-spi.h"
#include "gtest/gtest-message.h"
#include "gtest/internal/gtest-internal.h"
#include "gtest/internal/gtest-string.h"
// Indicates that this translation unit is part of Google Test's
// implementation. It must come before gtest-internal-inl.h is
// included, or there will be a compiler error. This trick exists to
// prevent the accidental inclusion of gtest-internal-inl.h in the
// user's code.
#define GTEST_IMPLEMENTATION_ 1
#include "src/gtest-internal-inl.h"
#undef GTEST_IMPLEMENTATION_
namespace testing {
namespace internal {
#if defined(_MSC_VER) || defined(__BORLANDC__)
// MSVC and C++Builder do not provide a definition of STDERR_FILENO.
const int kStdOutFileno = 1;
const int kStdErrFileno = 2;
#else
const int kStdOutFileno = STDOUT_FILENO;
const int kStdErrFileno = STDERR_FILENO;
#endif // _MSC_VER
#if GTEST_OS_LINUX
namespace {
template <typename T>
T ReadProcFileField(const string& filename, int field) {
std::string dummy;
std::ifstream file(filename.c_str());
while (field-- > 0) {
file >> dummy;
}
T output = 0;
file >> output;
return output;
}
} // namespace
// Returns the number of active threads, or 0 when there is an error.
size_t GetThreadCount() {
const string filename =
(Message() << "/proc/" << getpid() << "/stat").GetString();
return ReadProcFileField<int>(filename, 19);
}
#elif GTEST_OS_MAC
size_t GetThreadCount() {
const task_t task = mach_task_self();
mach_msg_type_number_t thread_count;
thread_act_array_t thread_list;
const kern_return_t status = task_threads(task, &thread_list, &thread_count);
if (status == KERN_SUCCESS) {
// task_threads allocates resources in thread_list and we need to free them
// to avoid leaks.
vm_deallocate(task,
reinterpret_cast<vm_address_t>(thread_list),
sizeof(thread_t) * thread_count);
return static_cast<size_t>(thread_count);
} else {
return 0;
}
}
#elif GTEST_OS_QNX
// Returns the number of threads running in the process, or 0 to indicate that
// we cannot detect it.
size_t GetThreadCount() {
const int fd = open("/proc/self/as", O_RDONLY);
if (fd < 0) {
return 0;
}
procfs_info process_info;
const int status =
devctl(fd, DCMD_PROC_INFO, &process_info, sizeof(process_info), NULL);
close(fd);
if (status == EOK) {
return static_cast<size_t>(process_info.num_threads);
} else {
return 0;
}
}
#elif GTEST_OS_AIX
size_t GetThreadCount() {
struct procentry64 entry;
pid_t pid = getpid();
int status = getprocs64(&entry, sizeof(entry), NULL, 0, &pid, 1);
if (status == 1) {
return entry.pi_thcount;
} else {
return 0;
}
}
#else
size_t GetThreadCount() {
// There's no portable way to detect the number of threads, so we just
// return 0 to indicate that we cannot detect it.
return 0;
}
#endif // GTEST_OS_LINUX
#if GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS
void SleepMilliseconds(int n) {
::Sleep(n);
}
AutoHandle::AutoHandle()
: handle_(INVALID_HANDLE_VALUE) {}
AutoHandle::AutoHandle(Handle handle)
: handle_(handle) {}
AutoHandle::~AutoHandle() {
Reset();
}
AutoHandle::Handle AutoHandle::Get() const {
return handle_;
}
void AutoHandle::Reset() {
Reset(INVALID_HANDLE_VALUE);
}
void AutoHandle::Reset(HANDLE handle) {
// Resetting with the same handle we already own is invalid.
if (handle_ != handle) {
if (IsCloseable()) {
::CloseHandle(handle_);
}
handle_ = handle;
} else {
GTEST_CHECK_(!IsCloseable())
<< "Resetting a valid handle to itself is likely a programmer error "
"and thus not allowed.";
}
}
bool AutoHandle::IsCloseable() const {
// Different Windows APIs may use either of these values to represent an
// invalid handle.
return handle_ != NULL && handle_ != INVALID_HANDLE_VALUE;
}
Notification::Notification()
: event_(::CreateEvent(NULL, // Default security attributes.
TRUE, // Do not reset automatically.
FALSE, // Initially unset.
NULL)) { // Anonymous event.
GTEST_CHECK_(event_.Get() != NULL);
}
void Notification::Notify() {
GTEST_CHECK_(::SetEvent(event_.Get()) != FALSE);
}
void Notification::WaitForNotification() {
GTEST_CHECK_(
::WaitForSingleObject(event_.Get(), INFINITE) == WAIT_OBJECT_0);
}
Mutex::Mutex()
: owner_thread_id_(0),
type_(kDynamic),
critical_section_init_phase_(0),
critical_section_(new CRITICAL_SECTION) {
::InitializeCriticalSection(critical_section_);
}
Mutex::~Mutex() {
// Static mutexes are leaked intentionally. It is not thread-safe to try
// to clean them up.
// TODO(yukawa): Switch to Slim Reader/Writer (SRW) Locks, which requires
// nothing to clean it up but is available only on Vista and later.
// http://msdn.microsoft.com/en-us/library/windows/desktop/aa904937.aspx
if (type_ == kDynamic) {
::DeleteCriticalSection(critical_section_);
delete critical_section_;
critical_section_ = NULL;
}
}
void Mutex::Lock() {
ThreadSafeLazyInit();
::EnterCriticalSection(critical_section_);
owner_thread_id_ = ::GetCurrentThreadId();
}
void Mutex::Unlock() {
ThreadSafeLazyInit();
// We don't protect writing to owner_thread_id_ here, as it's the
// caller's responsibility to ensure that the current thread holds the
// mutex when this is called.
owner_thread_id_ = 0;
::LeaveCriticalSection(critical_section_);
}
// Does nothing if the current thread holds the mutex. Otherwise, crashes
// with high probability.
void Mutex::AssertHeld() {
ThreadSafeLazyInit();
GTEST_CHECK_(owner_thread_id_ == ::GetCurrentThreadId())
<< "The current thread is not holding the mutex @" << this;
}
// Initializes owner_thread_id_ and critical_section_ in static mutexes.
void Mutex::ThreadSafeLazyInit() {
// Dynamic mutexes are initialized in the constructor.
if (type_ == kStatic) {
switch (
::InterlockedCompareExchange(&critical_section_init_phase_, 1L, 0L)) {
case 0:
// If critical_section_init_phase_ was 0 before the exchange, we
// are the first to test it and need to perform the initialization.
owner_thread_id_ = 0;
critical_section_ = new CRITICAL_SECTION;
::InitializeCriticalSection(critical_section_);
// Updates the critical_section_init_phase_ to 2 to signal
// initialization complete.
GTEST_CHECK_(::InterlockedCompareExchange(
&critical_section_init_phase_, 2L, 1L) ==
1L);
break;
case 1:
// Somebody else is already initializing the mutex; spin until they
// are done.
while (::InterlockedCompareExchange(&critical_section_init_phase_,
2L,
2L) != 2L) {
// Possibly yields the rest of the thread's time slice to other
// threads.
::Sleep(0);
}
break;
case 2:
break; // The mutex is already initialized and ready for use.
default:
GTEST_CHECK_(false)
<< "Unexpected value of critical_section_init_phase_ "
<< "while initializing a static mutex.";
}
}
}
namespace {
class ThreadWithParamSupport : public ThreadWithParamBase {
public:
static HANDLE CreateThread(Runnable* runnable,
Notification* thread_can_start) {
ThreadMainParam* param = new ThreadMainParam(runnable, thread_can_start);
DWORD thread_id;
// TODO(yukawa): Consider to use _beginthreadex instead.
HANDLE thread_handle = ::CreateThread(
NULL, // Default security.
0, // Default stack size.
&ThreadWithParamSupport::ThreadMain,
param, // Parameter to ThreadMainStatic
0x0, // Default creation flags.
&thread_id); // Need a valid pointer for the call to work under Win98.
GTEST_CHECK_(thread_handle != NULL) << "CreateThread failed with error "
<< ::GetLastError() << ".";
if (thread_handle == NULL) {
delete param;
}
return thread_handle;
}
private:
struct ThreadMainParam {
ThreadMainParam(Runnable* runnable, Notification* thread_can_start)
: runnable_(runnable),
thread_can_start_(thread_can_start) {
}
scoped_ptr<Runnable> runnable_;
// Does not own.
Notification* thread_can_start_;
};
static DWORD WINAPI ThreadMain(void* ptr) {
// Transfers ownership.
scoped_ptr<ThreadMainParam> param(static_cast<ThreadMainParam*>(ptr));
if (param->thread_can_start_ != NULL)
param->thread_can_start_->WaitForNotification();
param->runnable_->Run();
return 0;
}
// Prohibit instantiation.
ThreadWithParamSupport();
GTEST_DISALLOW_COPY_AND_ASSIGN_(ThreadWithParamSupport);
};
} // namespace
ThreadWithParamBase::ThreadWithParamBase(Runnable *runnable,
Notification* thread_can_start)
: thread_(ThreadWithParamSupport::CreateThread(runnable,
thread_can_start)) {
}
ThreadWithParamBase::~ThreadWithParamBase() {
Join();
}
void ThreadWithParamBase::Join() {
GTEST_CHECK_(::WaitForSingleObject(thread_.Get(), INFINITE) == WAIT_OBJECT_0)
<< "Failed to join the thread with error " << ::GetLastError() << ".";
}
// Maps a thread to a set of ThreadIdToThreadLocals that have values
// instantiated on that thread and notifies them when the thread exits. A
// ThreadLocal instance is expected to persist until all threads it has
// values on have terminated.
class ThreadLocalRegistryImpl {
public:
// Registers thread_local_instance as having value on the current thread.
// Returns a value that can be used to identify the thread from other threads.
static ThreadLocalValueHolderBase* GetValueOnCurrentThread(
const ThreadLocalBase* thread_local_instance) {
DWORD current_thread = ::GetCurrentThreadId();
MutexLock lock(&mutex_);
ThreadIdToThreadLocals* const thread_to_thread_locals =
GetThreadLocalsMapLocked();
ThreadIdToThreadLocals::iterator thread_local_pos =
thread_to_thread_locals->find(current_thread);
if (thread_local_pos == thread_to_thread_locals->end()) {
thread_local_pos = thread_to_thread_locals->insert(
std::make_pair(current_thread, ThreadLocalValues())).first;
StartWatcherThreadFor(current_thread);
}
ThreadLocalValues& thread_local_values = thread_local_pos->second;
ThreadLocalValues::iterator value_pos =
thread_local_values.find(thread_local_instance);
if (value_pos == thread_local_values.end()) {
value_pos =
thread_local_values
.insert(std::make_pair(
thread_local_instance,
linked_ptr<ThreadLocalValueHolderBase>(
thread_local_instance->NewValueForCurrentThread())))
.first;
}
return value_pos->second.get();
}
static void OnThreadLocalDestroyed(
const ThreadLocalBase* thread_local_instance) {
std::vector<linked_ptr<ThreadLocalValueHolderBase> > value_holders;
// Clean up the ThreadLocalValues data structure while holding the lock, but
// defer the destruction of the ThreadLocalValueHolderBases.
{
MutexLock lock(&mutex_);
ThreadIdToThreadLocals* const thread_to_thread_locals =
GetThreadLocalsMapLocked();
for (ThreadIdToThreadLocals::iterator it =
thread_to_thread_locals->begin();
it != thread_to_thread_locals->end();
++it) {
ThreadLocalValues& thread_local_values = it->second;
ThreadLocalValues::iterator value_pos =
thread_local_values.find(thread_local_instance);
if (value_pos != thread_local_values.end()) {
value_holders.push_back(value_pos->second);
thread_local_values.erase(value_pos);
// This 'if' can only be successful at most once, so theoretically we
// could break out of the loop here, but we don't bother doing so.
}
}
}
// Outside the lock, let the destructor for 'value_holders' deallocate the
// ThreadLocalValueHolderBases.
}
static void OnThreadExit(DWORD thread_id) {
GTEST_CHECK_(thread_id != 0) << ::GetLastError();
std::vector<linked_ptr<ThreadLocalValueHolderBase> > value_holders;
// Clean up the ThreadIdToThreadLocals data structure while holding the
// lock, but defer the destruction of the ThreadLocalValueHolderBases.
{
MutexLock lock(&mutex_);
ThreadIdToThreadLocals* const thread_to_thread_locals =
GetThreadLocalsMapLocked();
ThreadIdToThreadLocals::iterator thread_local_pos =
thread_to_thread_locals->find(thread_id);
if (thread_local_pos != thread_to_thread_locals->end()) {
ThreadLocalValues& thread_local_values = thread_local_pos->second;
for (ThreadLocalValues::iterator value_pos =
thread_local_values.begin();
value_pos != thread_local_values.end();
++value_pos) {
value_holders.push_back(value_pos->second);
}
thread_to_thread_locals->erase(thread_local_pos);
}
}
// Outside the lock, let the destructor for 'value_holders' deallocate the
// ThreadLocalValueHolderBases.
}
private:
// In a particular thread, maps a ThreadLocal object to its value.
typedef std::map<const ThreadLocalBase*,
linked_ptr<ThreadLocalValueHolderBase> > ThreadLocalValues;
// Stores all ThreadIdToThreadLocals having values in a thread, indexed by
// thread's ID.
typedef std::map<DWORD, ThreadLocalValues> ThreadIdToThreadLocals;
// Holds the thread id and thread handle that we pass from
// StartWatcherThreadFor to WatcherThreadFunc.
typedef std::pair<DWORD, HANDLE> ThreadIdAndHandle;
static void StartWatcherThreadFor(DWORD thread_id) {
// The returned handle will be kept in thread_map and closed by
// watcher_thread in WatcherThreadFunc.
HANDLE thread = ::OpenThread(SYNCHRONIZE | THREAD_QUERY_INFORMATION,
FALSE,
thread_id);
GTEST_CHECK_(thread != NULL);
// We need to to pass a valid thread ID pointer into CreateThread for it
// to work correctly under Win98.
DWORD watcher_thread_id;
HANDLE watcher_thread = ::CreateThread(
NULL, // Default security.
0, // Default stack size
&ThreadLocalRegistryImpl::WatcherThreadFunc,
reinterpret_cast<LPVOID>(new ThreadIdAndHandle(thread_id, thread)),
CREATE_SUSPENDED,
&watcher_thread_id);
GTEST_CHECK_(watcher_thread != NULL);
// Give the watcher thread the same priority as ours to avoid being
// blocked by it.
::SetThreadPriority(watcher_thread,
::GetThreadPriority(::GetCurrentThread()));
::ResumeThread(watcher_thread);
::CloseHandle(watcher_thread);
}
// Monitors exit from a given thread and notifies those
// ThreadIdToThreadLocals about thread termination.
static DWORD WINAPI WatcherThreadFunc(LPVOID param) {
const ThreadIdAndHandle* tah =
reinterpret_cast<const ThreadIdAndHandle*>(param);
GTEST_CHECK_(
::WaitForSingleObject(tah->second, INFINITE) == WAIT_OBJECT_0);
OnThreadExit(tah->first);
::CloseHandle(tah->second);
delete tah;
return 0;
}
// Returns map of thread local instances.
static ThreadIdToThreadLocals* GetThreadLocalsMapLocked() {
mutex_.AssertHeld();
static ThreadIdToThreadLocals* map = new ThreadIdToThreadLocals;
return map;
}
// Protects access to GetThreadLocalsMapLocked() and its return value.
static Mutex mutex_;
// Protects access to GetThreadMapLocked() and its return value.
static Mutex thread_map_mutex_;
};
Mutex ThreadLocalRegistryImpl::mutex_(Mutex::kStaticMutex);
Mutex ThreadLocalRegistryImpl::thread_map_mutex_(Mutex::kStaticMutex);
ThreadLocalValueHolderBase* ThreadLocalRegistry::GetValueOnCurrentThread(
const ThreadLocalBase* thread_local_instance) {
return ThreadLocalRegistryImpl::GetValueOnCurrentThread(
thread_local_instance);
}
void ThreadLocalRegistry::OnThreadLocalDestroyed(
const ThreadLocalBase* thread_local_instance) {
ThreadLocalRegistryImpl::OnThreadLocalDestroyed(thread_local_instance);
}
#endif // GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS
#if GTEST_USES_POSIX_RE
// Implements RE. Currently only needed for death tests.
RE::~RE() {
if (is_valid_) {
// regfree'ing an invalid regex might crash because the content
// of the regex is undefined. Since the regex's are essentially
// the same, one cannot be valid (or invalid) without the other
// being so too.
regfree(&partial_regex_);
regfree(&full_regex_);
}
free(const_cast<char*>(pattern_));
}
// Returns true iff regular expression re matches the entire str.
bool RE::FullMatch(const char* str, const RE& re) {
if (!re.is_valid_) return false;
regmatch_t match;
return regexec(&re.full_regex_, str, 1, &match, 0) == 0;
}
// Returns true iff regular expression re matches a substring of str
// (including str itself).
bool RE::PartialMatch(const char* str, const RE& re) {
if (!re.is_valid_) return false;
regmatch_t match;
return regexec(&re.partial_regex_, str, 1, &match, 0) == 0;
}
// Initializes an RE from its string representation.
void RE::Init(const char* regex) {
pattern_ = posix::StrDup(regex);
// Reserves enough bytes to hold the regular expression used for a
// full match.
const size_t full_regex_len = strlen(regex) + 10;
char* const full_pattern = new char[full_regex_len];
snprintf(full_pattern, full_regex_len, "^(%s)$", regex);
is_valid_ = regcomp(&full_regex_, full_pattern, REG_EXTENDED) == 0;
// We want to call regcomp(&partial_regex_, ...) even if the
// previous expression returns false. Otherwise partial_regex_ may
// not be properly initialized can may cause trouble when it's
// freed.
//
// Some implementation of POSIX regex (e.g. on at least some
// versions of Cygwin) doesn't accept the empty string as a valid
// regex. We change it to an equivalent form "()" to be safe.
if (is_valid_) {
const char* const partial_regex = (*regex == '\0') ? "()" : regex;
is_valid_ = regcomp(&partial_regex_, partial_regex, REG_EXTENDED) == 0;
}
EXPECT_TRUE(is_valid_)
<< "Regular expression \"" << regex
<< "\" is not a valid POSIX Extended regular expression.";
delete[] full_pattern;
}
#elif GTEST_USES_SIMPLE_RE
// Returns true iff ch appears anywhere in str (excluding the
// terminating '\0' character).
bool IsInSet(char ch, const char* str) {
return ch != '\0' && strchr(str, ch) != NULL;
}
// Returns true iff ch belongs to the given classification. Unlike
// similar functions in <ctype.h>, these aren't affected by the
// current locale.
bool IsAsciiDigit(char ch) { return '0' <= ch && ch <= '9'; }
bool IsAsciiPunct(char ch) {
return IsInSet(ch, "^-!\"#$%&'()*+,./:;<=>?@[\\]_`{|}~");
}
bool IsRepeat(char ch) { return IsInSet(ch, "?*+"); }
bool IsAsciiWhiteSpace(char ch) { return IsInSet(ch, " \f\n\r\t\v"); }
bool IsAsciiWordChar(char ch) {
return ('a' <= ch && ch <= 'z') || ('A' <= ch && ch <= 'Z') ||
('0' <= ch && ch <= '9') || ch == '_';
}
// Returns true iff "\\c" is a supported escape sequence.
bool IsValidEscape(char c) {
return (IsAsciiPunct(c) || IsInSet(c, "dDfnrsStvwW"));
}
// Returns true iff the given atom (specified by escaped and pattern)
// matches ch. The result is undefined if the atom is invalid.
bool AtomMatchesChar(bool escaped, char pattern_char, char ch) {
if (escaped) { // "\\p" where p is pattern_char.
switch (pattern_char) {
case 'd': return IsAsciiDigit(ch);
case 'D': return !IsAsciiDigit(ch);
case 'f': return ch == '\f';
case 'n': return ch == '\n';
case 'r': return ch == '\r';
case 's': return IsAsciiWhiteSpace(ch);
case 'S': return !IsAsciiWhiteSpace(ch);
case 't': return ch == '\t';
case 'v': return ch == '\v';
case 'w': return IsAsciiWordChar(ch);
case 'W': return !IsAsciiWordChar(ch);
}
return IsAsciiPunct(pattern_char) && pattern_char == ch;
}
return (pattern_char == '.' && ch != '\n') || pattern_char == ch;
}
// Helper function used by ValidateRegex() to format error messages.
std::string FormatRegexSyntaxError(const char* regex, int index) {
return (Message() << "Syntax error at index " << index
<< " in simple regular expression \"" << regex << "\": ").GetString();
}
// Generates non-fatal failures and returns false if regex is invalid;
// otherwise returns true.
bool ValidateRegex(const char* regex) {
if (regex == NULL) {
// TODO(wan@google.com): fix the source file location in the
// assertion failures to match where the regex is used in user
// code.
ADD_FAILURE() << "NULL is not a valid simple regular expression.";
return false;
}
bool is_valid = true;
// True iff ?, *, or + can follow the previous atom.
bool prev_repeatable = false;
for (int i = 0; regex[i]; i++) {
if (regex[i] == '\\') { // An escape sequence
i++;
if (regex[i] == '\0') {
ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1)
<< "'\\' cannot appear at the end.";
return false;
}
if (!IsValidEscape(regex[i])) {
ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1)
<< "invalid escape sequence \"\\" << regex[i] << "\".";
is_valid = false;
}
prev_repeatable = true;
} else { // Not an escape sequence.
const char ch = regex[i];
if (ch == '^' && i > 0) {
ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
<< "'^' can only appear at the beginning.";
is_valid = false;
} else if (ch == '$' && regex[i + 1] != '\0') {
ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
<< "'$' can only appear at the end.";
is_valid = false;
} else if (IsInSet(ch, "()[]{}|")) {
ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
<< "'" << ch << "' is unsupported.";
is_valid = false;
} else if (IsRepeat(ch) && !prev_repeatable) {
ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
<< "'" << ch << "' can only follow a repeatable token.";
is_valid = false;
}
prev_repeatable = !IsInSet(ch, "^$?*+");
}
}
return is_valid;
}
// Matches a repeated regex atom followed by a valid simple regular
// expression. The regex atom is defined as c if escaped is false,
// or \c otherwise. repeat is the repetition meta character (?, *,
// or +). The behavior is undefined if str contains too many
// characters to be indexable by size_t, in which case the test will
// probably time out anyway. We are fine with this limitation as
// std::string has it too.
bool MatchRepetitionAndRegexAtHead(
bool escaped, char c, char repeat, const char* regex,
const char* str) {
const size_t min_count = (repeat == '+') ? 1 : 0;
const size_t max_count = (repeat == '?') ? 1 :
static_cast<size_t>(-1) - 1;
// We cannot call numeric_limits::max() as it conflicts with the
// max() macro on Windows.
for (size_t i = 0; i <= max_count; ++i) {
// We know that the atom matches each of the first i characters in str.
if (i >= min_count && MatchRegexAtHead(regex, str + i)) {
// We have enough matches at the head, and the tail matches too.
// Since we only care about *whether* the pattern matches str
// (as opposed to *how* it matches), there is no need to find a
// greedy match.
return true;
}
if (str[i] == '\0' || !AtomMatchesChar(escaped, c, str[i]))
return false;
}
return false;
}
// Returns true iff regex matches a prefix of str. regex must be a
// valid simple regular expression and not start with "^", or the
// result is undefined.
bool MatchRegexAtHead(const char* regex, const char* str) {
if (*regex == '\0') // An empty regex matches a prefix of anything.
return true;
// "$" only matches the end of a string. Note that regex being
// valid guarantees that there's nothing after "$" in it.
if (*regex == '$')
return *str == '\0';
// Is the first thing in regex an escape sequence?
const bool escaped = *regex == '\\';
if (escaped)
++regex;
if (IsRepeat(regex[1])) {
// MatchRepetitionAndRegexAtHead() calls MatchRegexAtHead(), so
// here's an indirect recursion. It terminates as the regex gets
// shorter in each recursion.
return MatchRepetitionAndRegexAtHead(
escaped, regex[0], regex[1], regex + 2, str);
} else {
// regex isn't empty, isn't "$", and doesn't start with a
// repetition. We match the first atom of regex with the first
// character of str and recurse.
return (*str != '\0') && AtomMatchesChar(escaped, *regex, *str) &&
MatchRegexAtHead(regex + 1, str + 1);
}
}
// Returns true iff regex matches any substring of str. regex must be
// a valid simple regular expression, or the result is undefined.
//
// The algorithm is recursive, but the recursion depth doesn't exceed
// the regex length, so we won't need to worry about running out of
// stack space normally. In rare cases the time complexity can be
// exponential with respect to the regex length + the string length,
// but usually it's must faster (often close to linear).
bool MatchRegexAnywhere(const char* regex, const char* str) {
if (regex == NULL || str == NULL)
return false;
if (*regex == '^')
return MatchRegexAtHead(regex + 1, str);
// A successful match can be anywhere in str.
do {
if (MatchRegexAtHead(regex, str))
return true;
} while (*str++ != '\0');
return false;
}
// Implements the RE class.
RE::~RE() {
free(const_cast<char*>(pattern_));
free(const_cast<char*>(full_pattern_));
}
// Returns true iff regular expression re matches the entire str.
bool RE::FullMatch(const char* str, const RE& re) {
return re.is_valid_ && MatchRegexAnywhere(re.full_pattern_, str);
}
// Returns true iff regular expression re matches a substring of str
// (including str itself).
bool RE::PartialMatch(const char* str, const RE& re) {
return re.is_valid_ && MatchRegexAnywhere(re.pattern_, str);
}
// Initializes an RE from its string representation.
void RE::Init(const char* regex) {
pattern_ = full_pattern_ = NULL;
if (regex != NULL) {
pattern_ = posix::StrDup(regex);
}
is_valid_ = ValidateRegex(regex);
if (!is_valid_) {
// No need to calculate the full pattern when the regex is invalid.
return;
}
const size_t len = strlen(regex);
// Reserves enough bytes to hold the regular expression used for a
// full match: we need space to prepend a '^', append a '$', and
// terminate the string with '\0'.
char* buffer = static_cast<char*>(malloc(len + 3));
full_pattern_ = buffer;
if (*regex != '^')
*buffer++ = '^'; // Makes sure full_pattern_ starts with '^'.
// We don't use snprintf or strncpy, as they trigger a warning when
// compiled with VC++ 8.0.
memcpy(buffer, regex, len);
buffer += len;
if (len == 0 || regex[len - 1] != '$')
*buffer++ = '$'; // Makes sure full_pattern_ ends with '$'.
*buffer = '\0';
}
#endif // GTEST_USES_POSIX_RE
const char kUnknownFile[] = "unknown file";
// Formats a source file path and a line number as they would appear
// in an error message from the compiler used to compile this code.
GTEST_API_ ::std::string FormatFileLocation(const char* file, int line) {
const std::string file_name(file == NULL ? kUnknownFile : file);
if (line < 0) {
return file_name + ":";
}
#ifdef _MSC_VER
return file_name + "(" + StreamableToString(line) + "):";
#else
return file_name + ":" + StreamableToString(line) + ":";
#endif // _MSC_VER
}
// Formats a file location for compiler-independent XML output.
// Although this function is not platform dependent, we put it next to
// FormatFileLocation in order to contrast the two functions.
// Note that FormatCompilerIndependentFileLocation() does NOT append colon
// to the file location it produces, unlike FormatFileLocation().
GTEST_API_ ::std::string FormatCompilerIndependentFileLocation(
const char* file, int line) {
const std::string file_name(file == NULL ? kUnknownFile : file);
if (line < 0)
return file_name;
else
return file_name + ":" + StreamableToString(line);
}
GTestLog::GTestLog(GTestLogSeverity severity, const char* file, int line)
: severity_(severity) {
const char* const marker =
severity == GTEST_INFO ? "[ INFO ]" :
severity == GTEST_WARNING ? "[WARNING]" :
severity == GTEST_ERROR ? "[ ERROR ]" : "[ FATAL ]";
GetStream() << ::std::endl << marker << " "
<< FormatFileLocation(file, line).c_str() << ": ";
}
// Flushes the buffers and, if severity is GTEST_FATAL, aborts the program.
GTestLog::~GTestLog() {
GetStream() << ::std::endl;
if (severity_ == GTEST_FATAL) {
fflush(stderr);
posix::Abort();
}
}
// Disable Microsoft deprecation warnings for POSIX functions called from
// this class (creat, dup, dup2, and close)
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996)
#if GTEST_HAS_STREAM_REDIRECTION
// Object that captures an output stream (stdout/stderr).
class CapturedStream {
public:
// The ctor redirects the stream to a temporary file.
explicit CapturedStream(int fd) : fd_(fd), uncaptured_fd_(dup(fd)) {
# if GTEST_OS_WINDOWS
char temp_dir_path[MAX_PATH + 1] = { '\0' }; // NOLINT
char temp_file_path[MAX_PATH + 1] = { '\0' }; // NOLINT
::GetTempPathA(sizeof(temp_dir_path), temp_dir_path);
const UINT success = ::GetTempFileNameA(temp_dir_path,
"gtest_redir",
0, // Generate unique file name.
temp_file_path);
GTEST_CHECK_(success != 0)
<< "Unable to create a temporary file in " << temp_dir_path;
const int captured_fd = creat(temp_file_path, _S_IREAD | _S_IWRITE);
GTEST_CHECK_(captured_fd != -1) << "Unable to open temporary file "
<< temp_file_path;
filename_ = temp_file_path;
# else
// There's no guarantee that a test has write access to the current
// directory, so we create the temporary file in the /tmp directory
// instead. We use /tmp on most systems, and /sdcard on Android.
// That's because Android doesn't have /tmp.
# if GTEST_OS_LINUX_ANDROID
// Note: Android applications are expected to call the framework's
// Context.getExternalStorageDirectory() method through JNI to get
// the location of the world-writable SD Card directory. However,
// this requires a Context handle, which cannot be retrieved
// globally from native code. Doing so also precludes running the
// code as part of a regular standalone executable, which doesn't
// run in a Dalvik process (e.g. when running it through 'adb shell').
//
// The location /sdcard is directly accessible from native code
// and is the only location (unofficially) supported by the Android
// team. It's generally a symlink to the real SD Card mount point
// which can be /mnt/sdcard, /mnt/sdcard0, /system/media/sdcard, or
// other OEM-customized locations. Never rely on these, and always
// use /sdcard.
char name_template[] = "/sdcard/gtest_captured_stream.XXXXXX";
# else
char name_template[] = "/tmp/captured_stream.XXXXXX";
# endif // GTEST_OS_LINUX_ANDROID
const int captured_fd = mkstemp(name_template);
filename_ = name_template;
# endif // GTEST_OS_WINDOWS
fflush(NULL);
dup2(captured_fd, fd_);
close(captured_fd);
}
~CapturedStream() {
remove(filename_.c_str());
}
std::string GetCapturedString() {
if (uncaptured_fd_ != -1) {
// Restores the original stream.
fflush(NULL);
dup2(uncaptured_fd_, fd_);
close(uncaptured_fd_);
uncaptured_fd_ = -1;
}
FILE* const file = posix::FOpen(filename_.c_str(), "r");
const std::string content = ReadEntireFile(file);
posix::FClose(file);
return content;
}
private:
const int fd_; // A stream to capture.
int uncaptured_fd_;
// Name of the temporary file holding the stderr output.
::std::string filename_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(CapturedStream);
};
GTEST_DISABLE_MSC_WARNINGS_POP_()
static CapturedStream* g_captured_stderr = NULL;
static CapturedStream* g_captured_stdout = NULL;
// Starts capturing an output stream (stdout/stderr).
void CaptureStream(int fd, const char* stream_name, CapturedStream** stream) {
if (*stream != NULL) {
GTEST_LOG_(FATAL) << "Only one " << stream_name
<< " capturer can exist at a time.";
}
*stream = new CapturedStream(fd);
}
// Stops capturing the output stream and returns the captured string.
std::string GetCapturedStream(CapturedStream** captured_stream) {
const std::string content = (*captured_stream)->GetCapturedString();
delete *captured_stream;
*captured_stream = NULL;
return content;
}
// Starts capturing stdout.
void CaptureStdout() {
CaptureStream(kStdOutFileno, "stdout", &g_captured_stdout);
}
// Starts capturing stderr.
void CaptureStderr() {
CaptureStream(kStdErrFileno, "stderr", &g_captured_stderr);
}
// Stops capturing stdout and returns the captured string.
std::string GetCapturedStdout() {
return GetCapturedStream(&g_captured_stdout);
}
// Stops capturing stderr and returns the captured string.
std::string GetCapturedStderr() {
return GetCapturedStream(&g_captured_stderr);
}
#endif // GTEST_HAS_STREAM_REDIRECTION
std::string TempDir() {
#if GTEST_OS_WINDOWS_MOBILE
return "\\temp\\";
#elif GTEST_OS_WINDOWS
const char* temp_dir = posix::GetEnv("TEMP");
if (temp_dir == NULL || temp_dir[0] == '\0')
return "\\temp\\";
else if (temp_dir[strlen(temp_dir) - 1] == '\\')
return temp_dir;
else
return std::string(temp_dir) + "\\";
#elif GTEST_OS_LINUX_ANDROID
return "/sdcard/";
#else
return "/tmp/";
#endif // GTEST_OS_WINDOWS_MOBILE
}
size_t GetFileSize(FILE* file) {
fseek(file, 0, SEEK_END);
return static_cast<size_t>(ftell(file));
}
std::string ReadEntireFile(FILE* file) {
const size_t file_size = GetFileSize(file);
char* const buffer = new char[file_size];
size_t bytes_last_read = 0; // # of bytes read in the last fread()
size_t bytes_read = 0; // # of bytes read so far
fseek(file, 0, SEEK_SET);
// Keeps reading the file until we cannot read further or the
// pre-determined file size is reached.
do {
bytes_last_read = fread(buffer+bytes_read, 1, file_size-bytes_read, file);
bytes_read += bytes_last_read;
} while (bytes_last_read > 0 && bytes_read < file_size);
const std::string content(buffer, bytes_read);
delete[] buffer;
return content;
}
#if GTEST_HAS_DEATH_TEST
static const ::std::vector<testing::internal::string>* g_injected_test_argvs =
NULL; // Owned.
void SetInjectableArgvs(const ::std::vector<testing::internal::string>* argvs) {
if (g_injected_test_argvs != argvs)
delete g_injected_test_argvs;
g_injected_test_argvs = argvs;
}
const ::std::vector<testing::internal::string>& GetInjectableArgvs() {
if (g_injected_test_argvs != NULL) {
return *g_injected_test_argvs;
}
return GetArgvs();
}
#endif // GTEST_HAS_DEATH_TEST
#if GTEST_OS_WINDOWS_MOBILE
namespace posix {
void Abort() {
DebugBreak();
TerminateProcess(GetCurrentProcess(), 1);
}
} // namespace posix
#endif // GTEST_OS_WINDOWS_MOBILE
// Returns the name of the environment variable corresponding to the
// given flag. For example, FlagToEnvVar("foo") will return
// "GTEST_FOO" in the open-source version.
static std::string FlagToEnvVar(const char* flag) {
const std::string full_flag =
(Message() << GTEST_FLAG_PREFIX_ << flag).GetString();
Message env_var;
for (size_t i = 0; i != full_flag.length(); i++) {
env_var << ToUpper(full_flag.c_str()[i]);
}
return env_var.GetString();
}
// Parses 'str' for a 32-bit signed integer. If successful, writes
// the result to *value and returns true; otherwise leaves *value
// unchanged and returns false.
bool ParseInt32(const Message& src_text, const char* str, Int32* value) {
// Parses the environment variable as a decimal integer.
char* end = NULL;
const long long_value = strtol(str, &end, 10); // NOLINT
// Has strtol() consumed all characters in the string?
if (*end != '\0') {
// No - an invalid character was encountered.
Message msg;
msg << "WARNING: " << src_text
<< " is expected to be a 32-bit integer, but actually"
<< " has value \"" << str << "\".\n";
printf("%s", msg.GetString().c_str());
fflush(stdout);
return false;
}
// Is the parsed value in the range of an Int32?
const Int32 result = static_cast<Int32>(long_value);
if (long_value == LONG_MAX || long_value == LONG_MIN ||
// The parsed value overflows as a long. (strtol() returns
// LONG_MAX or LONG_MIN when the input overflows.)
result != long_value
// The parsed value overflows as an Int32.
) {
Message msg;
msg << "WARNING: " << src_text
<< " is expected to be a 32-bit integer, but actually"
<< " has value " << str << ", which overflows.\n";
printf("%s", msg.GetString().c_str());
fflush(stdout);
return false;
}
*value = result;
return true;
}
// Reads and returns the Boolean environment variable corresponding to
// the given flag; if it's not set, returns default_value.
//
// The value is considered true iff it's not "0".
bool BoolFromGTestEnv(const char* flag, bool default_value) {
#if defined(GTEST_GET_BOOL_FROM_ENV_)
return GTEST_GET_BOOL_FROM_ENV_(flag, default_value);
#endif // defined(GTEST_GET_BOOL_FROM_ENV_)
const std::string env_var = FlagToEnvVar(flag);
const char* const string_value = posix::GetEnv(env_var.c_str());
return string_value == NULL ?
default_value : strcmp(string_value, "0") != 0;
}
// Reads and returns a 32-bit integer stored in the environment
// variable corresponding to the given flag; if it isn't set or
// doesn't represent a valid 32-bit integer, returns default_value.
Int32 Int32FromGTestEnv(const char* flag, Int32 default_value) {
#if defined(GTEST_GET_INT32_FROM_ENV_)
return GTEST_GET_INT32_FROM_ENV_(flag, default_value);
#endif // defined(GTEST_GET_INT32_FROM_ENV_)
const std::string env_var = FlagToEnvVar(flag);
const char* const string_value = posix::GetEnv(env_var.c_str());
if (string_value == NULL) {
// The environment variable is not set.
return default_value;
}
Int32 result = default_value;
if (!ParseInt32(Message() << "Environment variable " << env_var,
string_value, &result)) {
printf("The default value %s is used.\n",
(Message() << default_value).GetString().c_str());
fflush(stdout);
return default_value;
}
return result;
}
// Reads and returns the string environment variable corresponding to
// the given flag; if it's not set, returns default_value.
const char* StringFromGTestEnv(const char* flag, const char* default_value) {
#if defined(GTEST_GET_STRING_FROM_ENV_)
return GTEST_GET_STRING_FROM_ENV_(flag, default_value);
#endif // defined(GTEST_GET_STRING_FROM_ENV_)
const std::string env_var = FlagToEnvVar(flag);
const char* const value = posix::GetEnv(env_var.c_str());
return value == NULL ? default_value : value;
}
} // namespace internal
} // namespace testing