freematics-traccar-encrypted/esp32/libraries/crypto/ChaCha.cpp

282 lines
8.7 KiB
C++
Raw Permalink Normal View History

2024-06-30 19:31:13 -06:00
/*
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "ChaCha.h"
#include "Crypto.h"
#include "utility/RotateUtil.h"
#include "utility/EndianUtil.h"
#include "utility/ProgMemUtil.h"
#include <string.h>
/**
* \class ChaCha ChaCha.h <ChaCha.h>
* \brief ChaCha stream cipher.
*
* ChaCha is a stream cipher that takes a key, an 8-byte nonce/IV, and a
* counter and hashes them to generate a keystream to XOR with the plaintext.
* Variations on the ChaCha cipher use 8, 12, or 20 rounds of hashing
* operations with either 128-bit or 256-bit keys.
*
* Reference: http://cr.yp.to/chacha.html
*/
/**
* \brief Constructs a new ChaCha stream cipher.
*
* \param numRounds Number of encryption rounds to use; usually 8, 12, or 20.
*/
ChaCha::ChaCha(uint8_t numRounds)
: rounds(numRounds)
, posn(64)
{
}
ChaCha::~ChaCha()
{
clean(block);
clean(stream);
}
size_t ChaCha::keySize() const
{
// Default key size is 256-bit, but any key size is allowed.
return 32;
}
size_t ChaCha::ivSize() const
{
// We return 8 but we also support 12-byte nonces in setIV().
return 8;
}
/**
* \fn uint8_t ChaCha::numRounds() const
* \brief Returns the number of encryption rounds; usually 8, 12, or 20.
*
* \sa setNumRounds()
*/
/**
* \fn void ChaCha::setNumRounds(uint8_t numRounds)
* \brief Sets the number of encryption rounds.
*
* \param numRounds The number of encryption rounds; usually 8, 12, or 20.
*
* \sa numRounds()
*/
bool ChaCha::setKey(const uint8_t *key, size_t len)
{
static const char tag128[] PROGMEM = "expand 16-byte k";
static const char tag256[] PROGMEM = "expand 32-byte k";
if (len <= 16) {
memcpy_P(block, tag128, 16);
memcpy(block + 16, key, len);
memcpy(block + 32, key, len);
if (len < 16) {
memset(block + 16 + len, 0, 16 - len);
memset(block + 32 + len, 0, 16 - len);
}
} else {
if (len > 32)
len = 32;
memcpy_P(block, tag256, 16);
memcpy(block + 16, key, len);
if (len < 32)
memset(block + 16 + len, 0, 32 - len);
}
posn = 64;
return true;
}
bool ChaCha::setIV(const uint8_t *iv, size_t len)
{
// From draft-nir-cfrg-chacha20-poly1305-10.txt, we can use either
// 64-bit or 96-bit nonces. The 96-bit nonce consists of the high
// word of the counter prepended to a regular 64-bit nonce for ChaCha.
if (len == 8) {
memset(block + 48, 0, 8);
memcpy(block + 56, iv, len);
posn = 64;
return true;
} else if (len == 12) {
memset(block + 48, 0, 4);
memcpy(block + 52, iv, len);
posn = 64;
return true;
} else {
return false;
}
}
/**
* \brief Sets the starting counter for encryption.
*
* \param counter A 4-byte or 8-byte value to use for the starting counter
* instead of the default value of zero.
* \param len The length of the counter, which must be 4 or 8.
* \return Returns false if \a len is not 4 or 8.
*
* This function must be called after setIV() and before the first call
* to encrypt(). It is used to specify a different starting value than
* zero for the counter portion of the hash input.
*
* \sa setIV()
*/
bool ChaCha::setCounter(const uint8_t *counter, size_t len)
{
// Normally both the IV and the counter are 8 bytes in length.
// However, if the IV was 12 bytes, then a 4 byte counter can be used.
if (len == 4 || len == 8) {
memcpy(block + 48, counter, len);
posn = 64;
return true;
} else {
return false;
}
}
void ChaCha::encrypt(uint8_t *output, const uint8_t *input, size_t len)
{
while (len > 0) {
if (posn >= 64) {
// Generate a new encrypted counter block.
hashCore((uint32_t *)stream, (const uint32_t *)block, rounds);
posn = 0;
// Increment the counter, taking care not to reveal
// any timing information about the starting value.
// We iterate through the entire counter region even
// if we could stop earlier because a byte is non-zero.
uint16_t temp = 1;
uint8_t index = 48;
while (index < 56) {
temp += block[index];
block[index] = (uint8_t)temp;
temp >>= 8;
++index;
}
}
uint8_t templen = 64 - posn;
if (templen > len)
templen = len;
len -= templen;
while (templen > 0) {
*output++ = *input++ ^ stream[posn++];
--templen;
}
}
}
void ChaCha::decrypt(uint8_t *output, const uint8_t *input, size_t len)
{
encrypt(output, input, len);
}
/**
* \brief Generates a single block of output direct from the keystream.
*
* \param output The output buffer to fill with keystream bytes.
*
* Unlike encrypt(), this function does not XOR the keystream with
* plaintext data. Instead it generates the keystream directly into
* the caller-supplied buffer. This is useful if the caller knows
* that the plaintext is all-zeroes.
*
* \sa encrypt()
*/
void ChaCha::keystreamBlock(uint32_t *output)
{
// Generate the hash output directly into the caller-supplied buffer.
hashCore(output, (const uint32_t *)block, rounds);
posn = 64;
// Increment the lowest counter byte. We are assuming that the caller
// is ChaChaPoly::setKey() and that the previous counter value was zero.
block[48] = 1;
}
void ChaCha::clear()
{
clean(block);
clean(stream);
posn = 64;
}
// Perform a ChaCha quarter round operation.
#define quarterRound(a, b, c, d) \
do { \
uint32_t _b = (b); \
uint32_t _a = (a) + _b; \
uint32_t _d = leftRotate((d) ^ _a, 16); \
uint32_t _c = (c) + _d; \
_b = leftRotate12(_b ^ _c); \
_a += _b; \
(d) = _d = leftRotate(_d ^ _a, 8); \
_c += _d; \
(a) = _a; \
(b) = leftRotate7(_b ^ _c); \
(c) = _c; \
} while (0)
/**
* \brief Executes the ChaCha hash core on an input memory block.
*
* \param output Output memory block, must be at least 16 words in length
* and must not overlap with \a input.
* \param input Input memory block, must be at least 16 words in length.
* \param rounds Number of ChaCha rounds to perform; usually 8, 12, or 20.
*
* This function is provided for the convenience of applications that need
* access to the ChaCha hash core without the higher-level processing that
* turns the core into a stream cipher.
*/
void ChaCha::hashCore(uint32_t *output, const uint32_t *input, uint8_t rounds)
{
uint8_t posn;
// Copy the input buffer to the output prior to the first round
// and convert from little-endian to host byte order.
for (posn = 0; posn < 16; ++posn)
output[posn] = le32toh(input[posn]);
// Perform the ChaCha rounds in sets of two.
for (; rounds >= 2; rounds -= 2) {
// Column round.
quarterRound(output[0], output[4], output[8], output[12]);
quarterRound(output[1], output[5], output[9], output[13]);
quarterRound(output[2], output[6], output[10], output[14]);
quarterRound(output[3], output[7], output[11], output[15]);
// Diagonal round.
quarterRound(output[0], output[5], output[10], output[15]);
quarterRound(output[1], output[6], output[11], output[12]);
quarterRound(output[2], output[7], output[8], output[13]);
quarterRound(output[3], output[4], output[9], output[14]);
}
// Add the original input to the final output, convert back to
// little-endian, and return the result.
for (posn = 0; posn < 16; ++posn)
output[posn] = htole32(output[posn] + le32toh(input[posn]));
}