freematics-traccar-encrypted/esp32/libraries/FreematicsPlus/FreematicsMEMS.cpp

1564 lines
63 KiB
C++
Raw Normal View History

2024-06-30 18:59:23 -06:00
/*************************************************************************
* Freematics MEMS motion sensor helper classes
* Distributed under BSD license
* Visit https://freematics.com for more information
* (C)2016-2020 Stanley Huang <stanley@freematics.com.au>
*************************************************************************/
#include "FreematicsMEMS.h"
#include <driver/i2c.h>
#include "utility/ICM_20948_REGISTERS.h"
#include "utility/AK09916_REGISTERS.h"
#define WRITE_BIT I2C_MASTER_WRITE /*!< I2C master write */
#define READ_BIT I2C_MASTER_READ /*!< I2C master read */
#define ACK_CHECK_EN 0x1 /*!< I2C master will check ack from slave*/
#define ACK_CHECK_DIS 0x0 /*!< I2C master will not check ack from slave */
#define ACK_VAL (i2c_ack_type_t)0x0 /*!< I2C ack value */
#define NACK_VAL (i2c_ack_type_t)0x1 /*!< I2C nack value */
// Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
// (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
// which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute
// device orientation
void CQuaterion::MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
{
uint32_t now = millis();
deltat = ((float)(now - lastUpdate)/1000.0f); // set integration time by time elapsed since last filter update
lastUpdate = now;
float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
float norm;
float hx, hy, _2bx, _2bz;
float s1, s2, s3, s4;
float qDot1, qDot2, qDot3, qDot4;
// Auxiliary variables to avoid repeated arithmetic
float _2q1mx;
float _2q1my;
float _2q1mz;
float _2q2mx;
float _4bx;
float _4bz;
float _2q1 = 2.0f * q1;
float _2q2 = 2.0f * q2;
float _2q3 = 2.0f * q3;
float _2q4 = 2.0f * q4;
float _2q1q3 = 2.0f * q1 * q3;
float _2q3q4 = 2.0f * q3 * q4;
float q1q1 = q1 * q1;
float q1q2 = q1 * q2;
float q1q3 = q1 * q3;
float q1q4 = q1 * q4;
float q2q2 = q2 * q2;
float q2q3 = q2 * q3;
float q2q4 = q2 * q4;
float q3q3 = q3 * q3;
float q3q4 = q3 * q4;
float q4q4 = q4 * q4;
// Normalise accelerometer measurement
norm = sqrtf(ax * ax + ay * ay + az * az);
if (norm == 0.0f) return; // handle NaN
norm = 1.0f/norm;
ax *= norm;
ay *= norm;
az *= norm;
// Normalise magnetometer measurement
norm = sqrtf(mx * mx + my * my + mz * mz);
if (norm == 0.0f) return; // handle NaN
norm = 1.0f/norm;
mx *= norm;
my *= norm;
mz *= norm;
// Reference direction of Earth's magnetic field
_2q1mx = 2.0f * q1 * mx;
_2q1my = 2.0f * q1 * my;
_2q1mz = 2.0f * q1 * mz;
_2q2mx = 2.0f * q2 * mx;
hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
_2bx = sqrtf(hx * hx + hy * hy);
_2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
_4bx = 2.0f * _2bx;
_4bz = 2.0f * _2bz;
// Gradient decent algorithm corrective step
s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
norm = sqrtf(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude
norm = 1.0f/norm;
s1 *= norm;
s2 *= norm;
s3 *= norm;
s4 *= norm;
// Compute rate of change of quaternion
qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;
// Integrate to yield quaternion
q1 += qDot1 * deltat;
q2 += qDot2 * deltat;
q3 += qDot3 * deltat;
q4 += qDot4 * deltat;
norm = sqrtf(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
norm = 1.0f/norm;
q[0] = q1 * norm;
q[1] = q2 * norm;
q[2] = q3 * norm;
q[3] = q4 * norm;
}
void CQuaterion::getOrientation(ORIENTATION* ori)
{
ori->yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]) * 180.0f / PI;
ori->pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])) * 180.0f / PI;
ori->roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]) * 180.0f / PI;
}
/*******************************************************************************
Base I2C MEMS class
*******************************************************************************/
#define WRITE_BIT I2C_MASTER_WRITE /*!< I2C master write */
#define READ_BIT I2C_MASTER_READ /*!< I2C master read */
#define ACK_CHECK_EN 0x1 /*!< I2C master will check ack from slave*/
#define ACK_CHECK_DIS 0x0 /*!< I2C master will not check ack from slave */
#define ACK_VAL (i2c_ack_type_t)0x0 /*!< I2C ack value */
#define NACK_VAL (i2c_ack_type_t)0x1 /*!< I2C nack value */
bool MEMS_I2C::initI2C(unsigned long clock)
{
i2c_port_t i2c_master_port = I2C_NUM_0;
i2c_config_t conf = {
.mode = I2C_MODE_MASTER,
#ifdef ARDUINO_ESP32C3_DEV
.sda_io_num = 4,
.scl_io_num = 5,
#else
.sda_io_num = 21,
.scl_io_num = 22,
#endif
.sda_pullup_en = GPIO_PULLUP_ENABLE,
.scl_pullup_en = GPIO_PULLUP_ENABLE,
};
conf.master.clk_speed = clock;
return i2c_param_config(i2c_master_port, &conf) == ESP_OK &&
i2c_driver_install(i2c_master_port, conf.mode, 0, 0, 0) == ESP_OK;
}
void MEMS_I2C::uninitI2C()
{
i2c_driver_delete((i2c_port_t)I2C_NUM_0);
}
/*******************************************************************************
MPU-9250 class functions
*******************************************************************************/
//==============================================================================
//====== Set of useful function to access acceleration. gyroscope, magnetometer,
//====== and temperature data
//==============================================================================
void MPU9250::readAccelData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z accel register data stored here
readBytes(ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ;
destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ;
}
void MPU9250::readGyroData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z gyro register data stored here
readBytes(GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ;
destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ;
}
void MPU9250::readMagData(int16_t * destination)
{
if(readByteAK(AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
readBytesAK(AK8963_XOUT_L, 7, rawData); // Read the six raw data and ST2 registers sequentially into data array
uint8_t c = rawData[6]; // End data read by reading ST2 register
if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ; // Data stored as little Endian
destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ;
}
}
}
int16_t MPU9250::readTempData()
{
uint8_t rawData[2]; // x/y/z gyro register data stored here
readBytes(TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
return ((int16_t)rawData[0] << 8) | rawData[1]; // Turn the MSB and LSB into a 16-bit value
}
bool MPU9250::initAK8963(float * destination)
{
if (readByteAK(WHO_AM_I_AK8963) != 0x48) {
return false;
}
// First extract the factory calibration for each magnetometer axis
uint8_t rawData[3]; // x/y/z gyro calibration data stored here
writeByteAK(AK8963_CNTL, 0x00); // Power down magnetometer
delay(10);
writeByteAK(AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
delay(10);
// Read the x-, y-, and z-axis calibration values
/*
if (!readBytesAK(AK8963_ASAX, 3, &rawData[0], 3000)) {
return false;
}
*/
rawData[0] = readByteAK(AK8963_ASAX);
rawData[1] = readByteAK(AK8963_ASAY);
rawData[2] = readByteAK(AK8963_ASAZ);
destination[0] = (float)(rawData[0] - 128)/256. + 1.; // Return x-axis sensitivity adjustment values, etc.
destination[1] = (float)(rawData[1] - 128)/256. + 1.;
destination[2] = (float)(rawData[2] - 128)/256. + 1.;
writeByteAK(AK8963_CNTL, 0x00); // Power down magnetometer
delay(10);
// Configure the magnetometer for continuous read and highest resolution
// set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
// and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
writeByteAK(AK8963_CNTL, MFS_16BITS << 4 | Mmode); // Set magnetometer data resolution and sample ODR
delay(10);
return true;
}
// Function which accumulates gyro and accelerometer data after device
// initialization. It calculates the average of the at-rest readings and then
// loads the resulting offsets into accelerometer and gyro bias registers.
void MPU9250::calibrateMPU9250(float * gyroBias, float * accelBias)
{
uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
uint16_t ii, packet_count, fifo_count;
int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
// reset device
// Write a one to bit 7 reset bit; toggle reset device
writeByte(PWR_MGMT_1, 0x80);
delay(100);
// get stable time source; Auto select clock source to be PLL gyroscope
// reference if ready else use the internal oscillator, bits 2:0 = 001
writeByte(PWR_MGMT_1, 0x01);
writeByte(PWR_MGMT_2, 0x00);
delay(200);
// Configure device for bias calculation
writeByte(INT_ENABLE, 0x00); // Disable all interrupts
writeByte(FIFO_EN, 0x00); // Disable FIFO
writeByte(PWR_MGMT_1, 0x00); // Turn on internal clock source
writeByte(I2C_MST_CTRL, 0x00); // Disable master
writeByte(USER_CTRL, 0x00); // Disable FIFO and I2C master modes
writeByte(USER_CTRL, 0x2C); // Reset FIFO and DMP
delay(15);
// Configure MPU6050 gyro and accelerometer for bias calculation
writeByte(CONFIG, 0x01); // Set low-pass filter to 188 Hz
writeByte(SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
writeByte(GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
writeByte(ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
uint16_t accelsensitivity = 16384; // = 16384 LSB/g
// Configure FIFO to capture accelerometer and gyro data for bias calculation
writeByte(USER_CTRL, 0x40); // Enable FIFO
writeByte(FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9150)
delay(40); // accumulate 40 samples in 40 milliseconds = 480 bytes
// At end of sample accumulation, turn off FIFO sensor read
writeByte(FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
readBytes(FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
fifo_count = ((uint16_t)data[0] << 8) | data[1];
packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
for (ii = 0; ii < packet_count; ii++)
{
int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
readBytes(FIFO_R_W, 12, &data[0]); // read data for averaging
accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ); // Form signed 16-bit integer for each sample in FIFO
accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] );
accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] );
gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] );
gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] );
gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]);
accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
accel_bias[1] += (int32_t) accel_temp[1];
accel_bias[2] += (int32_t) accel_temp[2];
gyro_bias[0] += (int32_t) gyro_temp[0];
gyro_bias[1] += (int32_t) gyro_temp[1];
gyro_bias[2] += (int32_t) gyro_temp[2];
}
accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
accel_bias[1] /= (int32_t) packet_count;
accel_bias[2] /= (int32_t) packet_count;
gyro_bias[0] /= (int32_t) packet_count;
gyro_bias[1] /= (int32_t) packet_count;
gyro_bias[2] /= (int32_t) packet_count;
if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation
else {accel_bias[2] += (int32_t) accelsensitivity;}
// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
data[3] = (-gyro_bias[1]/4) & 0xFF;
data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
data[5] = (-gyro_bias[2]/4) & 0xFF;
// Push gyro biases to hardware registers
writeByte(XG_OFFSET_H, data[0]);
writeByte(XG_OFFSET_L, data[1]);
writeByte(YG_OFFSET_H, data[2]);
writeByte(YG_OFFSET_L, data[3]);
writeByte(ZG_OFFSET_H, data[4]);
writeByte(ZG_OFFSET_L, data[5]);
// Output scaled gyro biases for display in the main program
gyroBias[0] = (float) gyro_bias[0]/(float) gyrosensitivity;
gyroBias[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
gyroBias[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
// Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
// factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
// non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
// compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
// the accelerometer biases calculated above must be divided by 8.
int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
readBytes(XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
accel_bias_reg[0] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
readBytes(YA_OFFSET_H, 2, &data[0]);
accel_bias_reg[1] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
readBytes(ZA_OFFSET_H, 2, &data[0]);
accel_bias_reg[2] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
for(ii = 0; ii < 3; ii++) {
if((accel_bias_reg[ii] & mask)) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
}
// Construct total accelerometer bias, including calculated average accelerometer bias from above
accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
accel_bias_reg[1] -= (accel_bias[1]/8);
accel_bias_reg[2] -= (accel_bias[2]/8);
data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
data[1] = (accel_bias_reg[0]) & 0xFF;
data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
data[3] = (accel_bias_reg[1]) & 0xFF;
data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
data[5] = (accel_bias_reg[2]) & 0xFF;
data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
// Apparently this is not working for the acceleration biases in the MPU-9250
// Are we handling the temperature correction bit properly?
// Push accelerometer biases to hardware registers
writeByte(XA_OFFSET_H, data[0]);
writeByte(XA_OFFSET_L, data[1]);
writeByte(YA_OFFSET_H, data[2]);
writeByte(YA_OFFSET_L, data[3]);
writeByte(ZA_OFFSET_H, data[4]);
writeByte(ZA_OFFSET_L, data[5]);
// Output scaled accelerometer biases for display in the main program
accelBias[0] = (float)accel_bias[0]/(float)accelsensitivity;
accelBias[1] = (float)accel_bias[1]/(float)accelsensitivity;
accelBias[2] = (float)accel_bias[2]/(float)accelsensitivity;
}
// Accelerometer and gyroscope self test; check calibration wrt factory settings
void MPU9250::MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
{
uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
uint8_t selfTest[6];
int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3];
float factoryTrim[6];
uint8_t FS = 0;
writeByte(SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz
writeByte(CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
writeByte(GYRO_CONFIG, 1<<FS); // Set full scale range for the gyro to 250 dps
writeByte(ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
writeByte(ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g
for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer
readBytes(ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
readBytes(GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
}
for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings
aAvg[ii] /= 200;
gAvg[ii] /= 200;
}
// Configure the accelerometer for self-test
writeByte(ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
writeByte(GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
delay(25); // Delay a while to let the device stabilize
for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer
readBytes(ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
readBytes(GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
}
for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings
aSTAvg[ii] /= 200;
gSTAvg[ii] /= 200;
}
// Configure the gyro and accelerometer for normal operation
writeByte(ACCEL_CONFIG, 0x00);
writeByte(GYRO_CONFIG, 0x00);
delay(25); // Delay a while to let the device stabilize
// Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
selfTest[0] = readByte(SELF_TEST_X_ACCEL); // X-axis accel self-test results
selfTest[1] = readByte(SELF_TEST_Y_ACCEL); // Y-axis accel self-test results
selfTest[2] = readByte(SELF_TEST_Z_ACCEL); // Z-axis accel self-test results
selfTest[3] = readByte(SELF_TEST_X_GYRO); // X-axis gyro self-test results
selfTest[4] = readByte(SELF_TEST_Y_GYRO); // Y-axis gyro self-test results
selfTest[5] = readByte(SELF_TEST_Z_GYRO); // Z-axis gyro self-test results
// Retrieve factory self-test value from self-test code reads
factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation
factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation
factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation
factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation
factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation
factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation
// Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
// To get percent, must multiply by 100
for (int i = 0; i < 3; i++) {
destination[i] = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i]; // Report percent differences
destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences
}
}
void MPU9250::writeByte(uint8_t subAddress, uint8_t data)
{
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( MPU9250_ADDRESS << 1 ) | WRITE_BIT, ACK_CHECK_EN);
// write sub-address and data
uint8_t buf[2] = {subAddress, data};
i2c_master_write(cmd, buf, sizeof(buf), ACK_CHECK_EN);
i2c_master_stop(cmd);
i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
}
uint8_t MPU9250::readByte(uint8_t subAddress)
{
// write sub-address
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( MPU9250_ADDRESS << 1 ) | WRITE_BIT, ACK_CHECK_DIS);
i2c_master_write_byte(cmd, subAddress, ACK_CHECK_EN);
i2c_master_stop(cmd);
i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
// read data
uint8_t data = 0;
cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( MPU9250_ADDRESS << 1 ) | READ_BIT, ACK_CHECK_EN);
i2c_master_read_byte(cmd, &data, NACK_VAL);
i2c_master_stop(cmd);
i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
return data;
}
bool MPU9250::readBytes(uint8_t subAddress, uint8_t count, uint8_t * dest)
{
// write sub-address
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( MPU9250_ADDRESS << 1 ) | WRITE_BIT, ACK_CHECK_DIS);
i2c_master_write_byte(cmd, subAddress, ACK_CHECK_EN);
i2c_master_stop(cmd);
esp_err_t ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
if (ret != ESP_OK) return false;
// read data
cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( MPU9250_ADDRESS << 1 ) | READ_BIT, ACK_CHECK_EN);
if (count > 1) {
i2c_master_read(cmd, dest, count - 1, ACK_VAL);
}
i2c_master_read_byte(cmd, dest + count - 1, NACK_VAL);
i2c_master_stop(cmd);
ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
return ret == ESP_OK;
}
void MPU9250::writeByteAK(uint8_t subAddress, uint8_t data)
{
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( AK8963_ADDRESS << 1 ) | WRITE_BIT, ACK_CHECK_EN);
// write sub-address and data
uint8_t buf[2] = {subAddress, data};
i2c_master_write(cmd, buf, sizeof(buf), ACK_CHECK_EN);
i2c_master_stop(cmd);
i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
}
uint8_t MPU9250::readByteAK(uint8_t subAddress)
{
// write sub-address
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( AK8963_ADDRESS << 1 ) | WRITE_BIT, ACK_CHECK_DIS);
i2c_master_write_byte(cmd, subAddress, ACK_CHECK_EN);
i2c_master_stop(cmd);
i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
// read data
uint8_t data = 0;
cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( AK8963_ADDRESS << 1 ) | READ_BIT, ACK_CHECK_EN);
i2c_master_read_byte(cmd, &data, NACK_VAL);
i2c_master_stop(cmd);
i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
return data;
}
bool MPU9250::readBytesAK(uint8_t subAddress, uint8_t count, uint8_t * dest)
{
// write sub-address
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( AK8963_ADDRESS << 1 ) | WRITE_BIT, ACK_CHECK_DIS);
i2c_master_write_byte(cmd, subAddress, ACK_CHECK_EN);
i2c_master_stop(cmd);
esp_err_t ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
if (ret != ESP_OK) return false;
// read data
cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( AK8963_ADDRESS << 1 ) | READ_BIT, ACK_CHECK_EN);
if (count > 1) {
i2c_master_read(cmd, dest, count - 1, ACK_VAL);
}
i2c_master_read_byte(cmd, dest + count - 1, NACK_VAL);
i2c_master_stop(cmd);
ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
return ret == ESP_OK;
}
void MPU9250::init()
{
// wake up device
writeByte(PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
delay(100); // Wait for all registers to reset
// get stable time source
writeByte(PWR_MGMT_1, 0x01); // Auto select clock source to be PLL gyroscope reference if ready else
delay(200);
// Configure Gyro and Thermometer
// Disable FSYNC and set thermometer and gyro bandwidth to 41 and 42 Hz, respectively;
// minimum delay time for this setting is 5.9 ms, which means sensor fusion update rates cannot
// be higher than 1 / 0.0059 = 170 Hz
// DLPF_CFG = bits 2:0 = 011; this limits the sample rate to 1000 Hz for both
// With the MPU9250, it is possible to get gyro sample rates of 32 kHz (!), 8 kHz, or 1 kHz
writeByte(CONFIG, 0x03);
// Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
writeByte(SMPLRT_DIV, 0x04); // Use a 200 Hz rate; a rate consistent with the filter update rate
// determined inset in CONFIG above
// Set gyroscope full scale range
// Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
uint8_t c = readByte(GYRO_CONFIG); // get current GYRO_CONFIG register value
// c = c & ~0xE0; // Clear self-test bits [7:5]
c = c & ~0x02; // Clear Fchoice bits [1:0]
c = c & ~0x18; // Clear AFS bits [4:3]
c = c | Gscale << 3; // Set full scale range for the gyro
// c =| 0x00; // Set Fchoice for the gyro to 11 by writing its inverse to bits 1:0 of GYRO_CONFIG
writeByte(GYRO_CONFIG, c ); // Write new GYRO_CONFIG value to register
// Set accelerometer full-scale range configuration
c = readByte(ACCEL_CONFIG); // get current ACCEL_CONFIG register value
// c = c & ~0xE0; // Clear self-test bits [7:5]
c = c & ~0x18; // Clear AFS bits [4:3]
c = c | Ascale << 3; // Set full scale range for the accelerometer
writeByte(ACCEL_CONFIG, c); // Write new ACCEL_CONFIG register value
// Set accelerometer sample rate configuration
// It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
// accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
c = readByte(ACCEL_CONFIG2); // get current ACCEL_CONFIG2 register value
c = c & ~0x0F; // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])
c = c | 0x03; // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
writeByte(ACCEL_CONFIG2, c); // Write new ACCEL_CONFIG2 register value
// The accelerometer, gyro, and thermometer are set to 1 kHz sample rates,
// but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting
// Configure Interrupts and Bypass Enable
// Set interrupt pin active high, push-pull, hold interrupt pin level HIGH until interrupt cleared,
// clear on read of INT_STATUS, and enable I2C_BYPASS_EN so additional chips
// can join the I2C bus and all can be controlled by the Arduino as master
writeByte(INT_PIN_CFG, 0x22);
writeByte(INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt
delay(100);
}
byte MPU9250::begin(bool fusion)
{
if (!initI2C(100000)) return 0;
byte ret = 0;
for (byte attempt = 0; attempt < 2; attempt++) {
//float SelfTest[6];
//MPU9250SelfTest(SelfTest);
byte c = readByte(WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250
if (c != 0x68 && c != 0x71) continue;
calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
init();
if (c == 0x71 && initAK8963(magCalibration))
ret = 2;
else
ret = 1;
break;
}
if (ret && fusion && !quaterion) {
quaterion = new CQuaterion;
}
return ret;
}
bool MPU9250::read(float* acc, float* gyr, float* mag, float* temp, ORIENTATION* ori)
{
if (acc) {
readAccelData(accelCount);
acc[0] = (float)accelCount[0]*aRes; // - accelBias[0]; // get actual g value, this depends on scale being set
acc[1] = (float)accelCount[1]*aRes; // - accelBias[1];
acc[2] = (float)accelCount[2]*aRes; // - accelBias[2];
}
if (gyr) {
readGyroData(gyroCount);
gyr[0] = (float)gyroCount[0]*gRes; // get actual gyro value, this depends on scale being set
gyr[1] = (float)gyroCount[1]*gRes;
gyr[2] = (float)gyroCount[2]*gRes;
}
if (mag) {
float magbias[3];
magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated
magbias[1] = +120.; // User environmental x-axis correction in milliGauss
magbias[2] = +125.; // User environmental x-axis correction in milliGauss
// Calculate the magnetometer values in milliGauss
// Include factory calibration per data sheet and user environmental corrections
readMagData(magCount);
mag[0] = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set
mag[1] = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];
mag[2] = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];
}
if (temp) {
int t = readTempData();
*temp = (float)t / 333.87 + 21;
}
if (quaterion && acc && gyr && mag) {
quaterion->MadgwickQuaternionUpdate(acc[0], acc[1], acc[2], gyr[0]*PI/180.0f, gyr[1]*PI/180.0f, gyr[2]*PI/180.0f, mag[0], mag[1], mag[2]);
quaterion->getOrientation(ori);
}
return true;
}
/*******************************************************************************
ICM-42627 class functions
*******************************************************************************/
byte ICM_42627::begin(bool fusion)
{
if (!initI2C(100000) || readByte(WHO_AM_I_ICM42627) != ICM_42627_DeviceID) return 0;
init();
return 1;
}
void ICM_42627::init()
{
writeByte(PWR_MGMT0_REG, TEMP_DIS_ON | IDLE_ON | ACCEL_MODE_LN | GYRO_MODE_LN );
delay(100);
writeByte(ACCEL_CONFIG0_REG, ACCEL_ODR_1KHZ | ACCEL_FS_SEL_2G); // Auto select clock source to be PLL gyroscope reference if ready else
delay(100);
writeByte(GYRO_CONFIG0_REG, GYRO_ODR_1KHZ | GYRO_FS_SEL_250dps);
delay(100);
writeByte(SELF_TEST_CONFIG_REG, 0x07);
delay(100);
}
void ICM_42627::writeByte(uint8_t subAddress, uint8_t data)
{
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( ICM_42627_ADDRESS << 1 ) | WRITE_BIT, ACK_CHECK_EN);
// write sub-address and data
uint8_t buf[2] = {subAddress, data};
i2c_master_write(cmd, buf, sizeof(buf), ACK_CHECK_EN);
i2c_master_stop(cmd);
i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
}
uint8_t ICM_42627::readByte(uint8_t subAddress)
{
// write sub-address
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( ICM_42627_ADDRESS << 1 ) | WRITE_BIT, ACK_CHECK_DIS);
i2c_master_write_byte(cmd, subAddress, ACK_CHECK_EN);
i2c_master_stop(cmd);
i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
// read data
uint8_t data = 0;
cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( ICM_42627_ADDRESS << 1 ) | READ_BIT, ACK_CHECK_EN);
i2c_master_read_byte(cmd, &data, NACK_VAL);
i2c_master_stop(cmd);
i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
return data;
}
bool ICM_42627::readBytes(uint8_t subAddress, uint8_t count, uint8_t * dest)
{
// write sub-address
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( ICM_42627_ADDRESS << 1 ) | WRITE_BIT, ACK_CHECK_DIS);
i2c_master_write_byte(cmd, subAddress, ACK_CHECK_EN);
i2c_master_stop(cmd);
esp_err_t ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
if (ret != ESP_OK) return false;
// read data
cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( ICM_42627_ADDRESS << 1 ) | READ_BIT, ACK_CHECK_EN);
if (count > 1) {
i2c_master_read(cmd, dest, count - 1, ACK_VAL);
}
i2c_master_read_byte(cmd, dest + count - 1, NACK_VAL);
i2c_master_stop(cmd);
ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
return ret == ESP_OK;
}
void ICM_42627::readAccelData(int16_t data[])
{
uint8_t rawData[6]; // x/y/z accel register data stored here
readBytes(ACCEL_XOUT_H_REG, 6, &rawData[0]); // Read the six raw data registers into data array
data[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a signed 16-bit value
data[1] = ((int16_t)rawData[2] << 8) | rawData[3] ;
data[2] = ((int16_t)rawData[4] << 8) | rawData[5] ;
}
int16_t ICM_42627::readTempData()
{
uint8_t rawData[2]; // x/y/z gyro register data stored here
readBytes(TEMP_OUT_H_REG, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
return ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a 16-bit value
}
void ICM_42627::readGyroData(int16_t data[])
{
uint8_t rawData[6]; // x/y/z gyro register data stored here
readBytes(GYRO_XOUT_H_REG, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
data[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a signed 16-bit value
data[1] = ((int16_t)rawData[2] << 8) | rawData[3] ;
data[2] = ((int16_t)rawData[4] << 8) | rawData[5] ;
}
bool ICM_42627::read(float* acc, float* gyr, float* mag, float* temp, ORIENTATION* ori)
{
if (acc) {
int16_t accelCount[3] = {0};
readAccelData(accelCount);
acc[0] = (float)accelCount[0]*aRes; // - accelBias[0]; // get actual g value, this depends on scale being set
acc[1] = (float)accelCount[1]*aRes; // - accelBias[1];
acc[2] = (float)accelCount[2]*aRes; // - accelBias[2];
}
if (gyr) {
int16_t gyroCount[3] = {0};
readGyroData(gyroCount);
gyr[0] = (float)gyroCount[0]*gRes; // get actual gyro value, this depends on scale being set
gyr[1] = (float)gyroCount[1]*gRes;
gyr[2] = (float)gyroCount[2]*gRes;
}
if (temp) {
*temp = (float)readTempData() / 132.48 + 25.0;
}
return true;
}
/*******************************************************************************
ICM-20948 class functions
*******************************************************************************/
// serif functions for the I2C and SPI classes
ICM_20948_Status_e ICM_20948_write_I2C(uint8_t reg, uint8_t* data, uint32_t len, void* user){
if(user == NULL){ return ICM_20948_Stat_ParamErr; }
uint8_t addr = ((ICM_20948_I2C*)user)->_addr;
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( addr << 1 ) | WRITE_BIT, ACK_CHECK_EN);
i2c_master_write_byte(cmd, reg, ACK_CHECK_EN);
i2c_master_write(cmd, data, len, ACK_CHECK_DIS);
i2c_master_stop(cmd);
esp_err_t ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
return ret == ESP_OK ? ICM_20948_Stat_Ok : ICM_20948_Stat_Err;
}
ICM_20948_Status_e ICM_20948_read_I2C(uint8_t reg, uint8_t* buff, uint32_t len, void* user){
if(user == NULL){ return ICM_20948_Stat_ParamErr; }
uint8_t addr = ((ICM_20948_I2C*)user)->_addr;
// write sub-address
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( addr << 1 ) | WRITE_BIT, ACK_CHECK_EN);
i2c_master_write_byte(cmd, reg, ACK_CHECK_EN);
i2c_master_stop(cmd);
esp_err_t ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
if (ret != ESP_OK) return ICM_20948_Stat_Err;
// read data
cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( addr << 1 ) | READ_BIT, ACK_CHECK_EN);
if (len > 1) {
i2c_master_read(cmd, buff, len - 1, ACK_VAL);
}
i2c_master_read_byte(cmd, buff + len - 1, NACK_VAL);
i2c_master_stop(cmd);
ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
return ret == ESP_OK ? ICM_20948_Stat_Ok : ICM_20948_Stat_NoData;
}
ICM_20948_AGMT_t ICM_20948::getAGMT ( void ){
status = ICM_20948_get_agmt( &_device, &agmt );
if( _has_magnetometer ){
getMagnetometerData( &agmt );
}
return agmt;
}
float ICM_20948::magX ( void ){
return getMagUT(agmt.mag.axes.x);
}
float ICM_20948::magY ( void ){
return getMagUT(agmt.mag.axes.y);
}
float ICM_20948::magZ ( void ){
return getMagUT(agmt.mag.axes.z);
}
float ICM_20948::getMagUT ( int16_t axis_val ){
return (((float)axis_val)*0.15);
}
float ICM_20948::accX ( void ){
return getAccMG(agmt.acc.axes.x);
}
float ICM_20948::accY ( void ){
return getAccMG(agmt.acc.axes.y);
}
float ICM_20948::accZ ( void ){
return getAccMG(agmt.acc.axes.z);
}
float ICM_20948::getAccMG ( int16_t axis_val ){
switch(agmt.fss.a){
case 0 : return (((float)axis_val)/16.384); break;
case 1 : return (((float)axis_val)/8.192); break;
case 2 : return (((float)axis_val)/4.096); break;
case 3 : return (((float)axis_val)/2.048); break;
default : return 0; break;
}
}
float ICM_20948::gyrX ( void ){
return getGyrDPS(agmt.gyr.axes.x);
}
float ICM_20948::gyrY ( void ){
return getGyrDPS(agmt.gyr.axes.y);
}
float ICM_20948::gyrZ ( void ){
return getGyrDPS(agmt.gyr.axes.z);
}
float ICM_20948::getGyrDPS ( int16_t axis_val ){
switch(agmt.fss.g){
case 0 : return (((float)axis_val)/131); break;
case 1 : return (((float)axis_val)/65.5); break;
case 2 : return (((float)axis_val)/32.8); break;
case 3 : return (((float)axis_val)/16.4); break;
default : return 0; break;
}
}
float ICM_20948::temp ( void ){
return getTempC(agmt.tmp.val);
}
float ICM_20948::getTempC ( int16_t val ){
return (((float)val)/333.87) + 21;
}
const char* ICM_20948::statusString ( ICM_20948_Status_e stat ){
ICM_20948_Status_e val;
if( stat == ICM_20948_Stat_NUM){
val = status;
}else{
val = stat;
}
switch(val){
case ICM_20948_Stat_Ok : return "All is well."; break;
case ICM_20948_Stat_Err : return "General Error"; break;
case ICM_20948_Stat_NotImpl : return "Not Implemented"; break;
case ICM_20948_Stat_ParamErr : return "Parameter Error"; break;
case ICM_20948_Stat_WrongID : return "Wrong ID"; break;
case ICM_20948_Stat_InvalSensor : return "Invalid Sensor"; break;
case ICM_20948_Stat_NoData : return "Data Underflow"; break;
case ICM_20948_Stat_SensorNotSupported : return "Sensor Not Supported"; break;
default :
return "Unknown Status"; break;
}
return "None";
}
// Device Level
ICM_20948_Status_e ICM_20948::setBank ( uint8_t bank ){
status = ICM_20948_set_bank( &_device, bank );
return status;
}
ICM_20948_Status_e ICM_20948::swReset ( void ){
status = ICM_20948_sw_reset( &_device );
return status;
}
ICM_20948_Status_e ICM_20948::sleep ( bool on ){
status = ICM_20948_sleep( &_device, on );
return status;
}
ICM_20948_Status_e ICM_20948::lowPower ( bool on ){
status = ICM_20948_low_power( &_device, on );
return status;
}
ICM_20948_Status_e ICM_20948::setClockSource ( ICM_20948_PWR_MGMT_1_CLKSEL_e source ){
status = ICM_20948_set_clock_source( &_device, source );
return status;
}
ICM_20948_Status_e ICM_20948::checkID ( void ){
status = ICM_20948_check_id( &_device );
return status;
}
bool ICM_20948::dataReady ( void ){
status = ICM_20948_data_ready( &_device );
if( status == ICM_20948_Stat_Ok ){ return true; }
return false;
}
uint8_t ICM_20948::getWhoAmI ( void ){
uint8_t retval = 0x00;
status = ICM_20948_get_who_am_i( &_device, &retval );
return retval;
}
bool ICM_20948::isConnected ( void ){
status = checkID();
if( status == ICM_20948_Stat_Ok ){ return true; }
return false;
}
// Internal Sensor Options
ICM_20948_Status_e ICM_20948::setSampleMode ( uint8_t sensor_id_bm, uint8_t lp_config_cycle_mode ){
status = ICM_20948_set_sample_mode( &_device, (ICM_20948_InternalSensorID_bm)sensor_id_bm, (ICM_20948_LP_CONFIG_CYCLE_e)lp_config_cycle_mode );
return status;
}
ICM_20948_Status_e ICM_20948::setFullScale ( uint8_t sensor_id_bm, ICM_20948_fss_t fss ){
status = ICM_20948_set_full_scale( &_device, (ICM_20948_InternalSensorID_bm)sensor_id_bm, fss );
return status;
}
ICM_20948_Status_e ICM_20948::setDLPFcfg ( uint8_t sensor_id_bm, ICM_20948_dlpcfg_t cfg ){
status = ICM_20948_set_dlpf_cfg( &_device, (ICM_20948_InternalSensorID_bm)sensor_id_bm, cfg );
return status;
}
ICM_20948_Status_e ICM_20948::enableDLPF ( uint8_t sensor_id_bm, bool enable ){
status = ICM_20948_enable_dlpf( &_device, (ICM_20948_InternalSensorID_bm)sensor_id_bm, enable );
return status;
}
ICM_20948_Status_e ICM_20948::setSampleRate ( uint8_t sensor_id_bm, ICM_20948_smplrt_t smplrt ){
status = ICM_20948_set_sample_rate( &_device, (ICM_20948_InternalSensorID_bm)sensor_id_bm, smplrt );
return status;
}
// Interrupts on INT Pin
ICM_20948_Status_e ICM_20948::clearInterrupts ( void ){
ICM_20948_INT_STATUS_t int_stat;
ICM_20948_INT_STATUS_1_t int_stat_1;
// read to clear interrupts
status = ICM_20948_set_bank( &_device, 0 ); if( status != ICM_20948_Stat_Ok ){ return status; }
status = ICM_20948_execute_r( &_device, AGB0_REG_INT_STATUS, (uint8_t*)&int_stat, sizeof(ICM_20948_INT_STATUS_t) ); if( status != ICM_20948_Stat_Ok ){ return status; }
status = ICM_20948_execute_r( &_device, AGB0_REG_INT_STATUS_1, (uint8_t*)&int_stat_1, sizeof(ICM_20948_INT_STATUS_1_t) ); if( status != ICM_20948_Stat_Ok ){ return status; }
// todo: there may be additional interrupts that need to be cleared, like FIFO overflow/watermark
return status;
}
ICM_20948_Status_e ICM_20948::cfgIntActiveLow ( bool active_low ){
ICM_20948_INT_PIN_CFG_t reg;
status = ICM_20948_int_pin_cfg ( &_device, NULL, &reg ); // read phase
if(status != ICM_20948_Stat_Ok){ return status; }
reg.INT1_ACTL = active_low; // set the setting
status = ICM_20948_int_pin_cfg ( &_device, &reg, NULL ); // write phase
if(status != ICM_20948_Stat_Ok){ return status; }
return status;
}
ICM_20948_Status_e ICM_20948::cfgIntOpenDrain ( bool open_drain ){
ICM_20948_INT_PIN_CFG_t reg;
status = ICM_20948_int_pin_cfg ( &_device, NULL, &reg ); // read phase
if(status != ICM_20948_Stat_Ok){ return status; }
reg.INT1_OPEN = open_drain; // set the setting
status = ICM_20948_int_pin_cfg ( &_device, &reg, NULL ); // write phase
if(status != ICM_20948_Stat_Ok){ return status; }
return status;
}
ICM_20948_Status_e ICM_20948::cfgIntLatch ( bool latching ){
ICM_20948_INT_PIN_CFG_t reg;
status = ICM_20948_int_pin_cfg ( &_device, NULL, &reg ); // read phase
if(status != ICM_20948_Stat_Ok){ return status; }
reg.INT1_LATCH_EN = latching; // set the setting
status = ICM_20948_int_pin_cfg ( &_device, &reg, NULL ); // write phase
if(status != ICM_20948_Stat_Ok){ return status; }
return status;
}
ICM_20948_Status_e ICM_20948::cfgIntAnyReadToClear ( bool enabled ){
ICM_20948_INT_PIN_CFG_t reg;
status = ICM_20948_int_pin_cfg ( &_device, NULL, &reg ); // read phase
if(status != ICM_20948_Stat_Ok){ return status; }
reg.INT_ANYRD_2CLEAR = enabled; // set the setting
status = ICM_20948_int_pin_cfg ( &_device, &reg, NULL ); // write phase
if(status != ICM_20948_Stat_Ok){ return status; }
return status;
}
ICM_20948_Status_e ICM_20948::cfgFsyncActiveLow ( bool active_low ){
ICM_20948_INT_PIN_CFG_t reg;
status = ICM_20948_int_pin_cfg ( &_device, NULL, &reg ); // read phase
if(status != ICM_20948_Stat_Ok){ return status; }
reg.ACTL_FSYNC = active_low; // set the setting
status = ICM_20948_int_pin_cfg ( &_device, &reg, NULL ); // write phase
if(status != ICM_20948_Stat_Ok){ return status; }
return status;
}
ICM_20948_Status_e ICM_20948::cfgFsyncIntMode ( bool interrupt_mode ){
ICM_20948_INT_PIN_CFG_t reg;
status = ICM_20948_int_pin_cfg ( &_device, NULL, &reg ); // read phase
if(status != ICM_20948_Stat_Ok){ return status; }
reg.FSYNC_INT_MODE_EN = interrupt_mode; // set the setting
status = ICM_20948_int_pin_cfg ( &_device, &reg, NULL ); // write phase
if(status != ICM_20948_Stat_Ok){ return status; }
return status;
}
// All these individual functions will use a read->set->write method to leave other settings untouched
ICM_20948_Status_e ICM_20948::intEnableI2C ( bool enable ){
ICM_20948_INT_enable_t en; // storage
status = ICM_20948_int_enable( &_device, NULL, &en ); // read phase
if( status != ICM_20948_Stat_Ok ){ return status; }
en.I2C_MST_INT_EN = enable; // change the setting
status = ICM_20948_int_enable( &_device, &en, &en ); // write phase w/ readback
if( status != ICM_20948_Stat_Ok ){ return status; }
if( en.I2C_MST_INT_EN != enable ){
status = ICM_20948_Stat_Err;
return status;
}
return status;
}
ICM_20948_Status_e ICM_20948::intEnableDMP ( bool enable ){
ICM_20948_INT_enable_t en; // storage
status = ICM_20948_int_enable( &_device, NULL, &en ); // read phase
if( status != ICM_20948_Stat_Ok ){ return status; }
en.DMP_INT1_EN = enable; // change the setting
status = ICM_20948_int_enable( &_device, &en, &en ); // write phase w/ readback
if( status != ICM_20948_Stat_Ok ){ return status; }
if( en.DMP_INT1_EN != enable ){
status = ICM_20948_Stat_Err;
return status;
}
return status;
}
ICM_20948_Status_e ICM_20948::intEnablePLL ( bool enable ){
ICM_20948_INT_enable_t en; // storage
status = ICM_20948_int_enable( &_device, NULL, &en ); // read phase
if( status != ICM_20948_Stat_Ok ){ return status; }
en.PLL_RDY_EN = enable; // change the setting
status = ICM_20948_int_enable( &_device, &en, &en ); // write phase w/ readback
if( status != ICM_20948_Stat_Ok ){ return status; }
if( en.PLL_RDY_EN != enable ){
status = ICM_20948_Stat_Err;
return status;
}
return status;
}
ICM_20948_Status_e ICM_20948::intEnableWOM ( bool enable ){
ICM_20948_INT_enable_t en; // storage
status = ICM_20948_int_enable( &_device, NULL, &en ); // read phase
if( status != ICM_20948_Stat_Ok ){ return status; }
en.WOM_INT_EN = enable; // change the setting
status = ICM_20948_int_enable( &_device, &en, &en ); // write phase w/ readback
if( status != ICM_20948_Stat_Ok ){ return status; }
if( en.WOM_INT_EN != enable ){
status = ICM_20948_Stat_Err;
return status;
}
return status;
}
ICM_20948_Status_e ICM_20948::intEnableWOF ( bool enable ){
ICM_20948_INT_enable_t en; // storage
status = ICM_20948_int_enable( &_device, NULL, &en ); // read phase
if( status != ICM_20948_Stat_Ok ){ return status; }
en.REG_WOF_EN = enable; // change the setting
status = ICM_20948_int_enable( &_device, &en, &en ); // write phase w/ readback
if( status != ICM_20948_Stat_Ok ){ return status; }
if( en.REG_WOF_EN != enable ){
status = ICM_20948_Stat_Err;
return status;
}
return status;
}
ICM_20948_Status_e ICM_20948::intEnableRawDataReady ( bool enable ){
ICM_20948_INT_enable_t en; // storage
status = ICM_20948_int_enable( &_device, NULL, &en ); // read phase
if( status != ICM_20948_Stat_Ok ){ return status; }
en.RAW_DATA_0_RDY_EN = enable; // change the setting
status = ICM_20948_int_enable( &_device, &en, &en ); // write phase w/ readback
if( status != ICM_20948_Stat_Ok ){ return status; }
if( en.RAW_DATA_0_RDY_EN != enable ){
Serial.println("mismatch error");
status = ICM_20948_Stat_Err;
return status;
}
return status;
}
ICM_20948_Status_e ICM_20948::intEnableOverflowFIFO ( uint8_t bm_enable ){
ICM_20948_INT_enable_t en; // storage
status = ICM_20948_int_enable( &_device, NULL, &en ); // read phase
if( status != ICM_20948_Stat_Ok ){ return status; }
en.FIFO_OVERFLOW_EN_0 = ((bm_enable >> 0) & 0x01); // change the settings
en.FIFO_OVERFLOW_EN_1 = ((bm_enable >> 1) & 0x01);
en.FIFO_OVERFLOW_EN_2 = ((bm_enable >> 2) & 0x01);
en.FIFO_OVERFLOW_EN_3 = ((bm_enable >> 3) & 0x01);
en.FIFO_OVERFLOW_EN_4 = ((bm_enable >> 4) & 0x01);
status = ICM_20948_int_enable( &_device, &en, &en ); // write phase w/ readback
if( status != ICM_20948_Stat_Ok ){ return status; }
return status;
}
ICM_20948_Status_e ICM_20948::intEnableWatermarkFIFO ( uint8_t bm_enable ){
ICM_20948_INT_enable_t en; // storage
status = ICM_20948_int_enable( &_device, NULL, &en ); // read phase
if( status != ICM_20948_Stat_Ok ){ return status; }
en.FIFO_WM_EN_0 = ((bm_enable >> 0) & 0x01); // change the settings
en.FIFO_WM_EN_1 = ((bm_enable >> 1) & 0x01);
en.FIFO_WM_EN_2 = ((bm_enable >> 2) & 0x01);
en.FIFO_WM_EN_3 = ((bm_enable >> 3) & 0x01);
en.FIFO_WM_EN_4 = ((bm_enable >> 4) & 0x01);
status = ICM_20948_int_enable( &_device, &en, &en ); // write phase w/ readback
if( status != ICM_20948_Stat_Ok ){ return status; }
return status;
}
// Interface Options
ICM_20948_Status_e ICM_20948::i2cMasterPassthrough ( bool passthrough ){
status = ICM_20948_i2c_master_passthrough ( &_device, passthrough );
return status;
}
ICM_20948_Status_e ICM_20948::i2cMasterEnable ( bool enable ){
status = ICM_20948_i2c_master_enable( &_device, enable );
return status;
}
ICM_20948_Status_e ICM_20948::i2cMasterConfigureSlave ( uint8_t slave, uint8_t addr, uint8_t reg, uint8_t len, bool Rw, bool enable, bool data_only, bool grp, bool swap ){
status = ICM_20948_i2c_master_configure_slave ( &_device, slave, addr, reg, len, Rw, enable, data_only, grp, swap );
return status;
}
ICM_20948_Status_e ICM_20948::i2cMasterSLV4Transaction( uint8_t addr, uint8_t reg, uint8_t* data, uint8_t len, bool Rw, bool send_reg_addr ){
status = ICM_20948_i2c_master_slv4_txn( &_device, addr, reg, data, len, Rw, send_reg_addr );
return status;
}
ICM_20948_Status_e ICM_20948::i2cMasterSingleW ( uint8_t addr, uint8_t reg, uint8_t data ){
status = ICM_20948_i2c_master_single_w( &_device, addr, reg, &data );
return status;
}
uint8_t ICM_20948::i2cMasterSingleR ( uint8_t addr, uint8_t reg ){
uint8_t data;
status = ICM_20948_i2c_master_single_r( &_device, addr, reg, &data );
return data;
}
ICM_20948_Status_e ICM_20948::startupDefault ( void ){
ICM_20948_Status_e retval = ICM_20948_Stat_Ok;
retval = checkID();
if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; }
retval = swReset();
if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; }
delay(50);
retval = sleep( false );
if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; }
retval = lowPower( false );
if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; }
retval = setSampleMode( (ICM_20948_Internal_Acc | ICM_20948_Internal_Gyr), ICM_20948_Sample_Mode_Continuous ); // options: ICM_20948_Sample_Mode_Continuous or ICM_20948_Sample_Mode_Cycled
if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; } // sensors: ICM_20948_Internal_Acc, ICM_20948_Internal_Gyr, ICM_20948_Internal_Mst
ICM_20948_fss_t FSS;
FSS.a = gpm2; // (ICM_20948_ACCEL_CONFIG_FS_SEL_e)
FSS.g = dps250; // (ICM_20948_GYRO_CONFIG_1_FS_SEL_e)
retval = setFullScale( (ICM_20948_Internal_Acc | ICM_20948_Internal_Gyr), FSS );
if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; }
ICM_20948_dlpcfg_t dlpcfg;
dlpcfg.a = acc_d473bw_n499bw;
dlpcfg.g = gyr_d361bw4_n376bw5;
retval = setDLPFcfg( (ICM_20948_Internal_Acc | ICM_20948_Internal_Gyr), dlpcfg );
if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; }
retval = enableDLPF( ICM_20948_Internal_Acc, false );
if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; }
retval = enableDLPF( ICM_20948_Internal_Gyr, false );
if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; }
_has_magnetometer = true;
retval = startupMagnetometer();
if(( retval != ICM_20948_Stat_Ok) && ( retval != ICM_20948_Stat_NotImpl )){ status = retval; return status; }
if( retval == ICM_20948_Stat_NotImpl ){
// This is a temporary fix.
// Ultimately we *should* be able to configure the I2C master to handle the
// magnetometer no matter what interface (SPI / I2C) we are using.
// Should try testing I2C master functionality on a bare ICM chip w/o TXS0108 level shifter...
_has_magnetometer = false;
retval = ICM_20948_Stat_Ok; // reset the retval because we handled it in this cases
}
status = retval;
return status;
}
ICM_20948_Status_e ICM_20948::startupMagnetometer ( void ){
return ICM_20948_Stat_NotImpl; // By default we assume that we cannot access the magnetometer
}
ICM_20948_Status_e ICM_20948::getMagnetometerData ( ICM_20948_AGMT_t* pagmt ){
return ICM_20948_Stat_NotImpl; // By default we assume that we cannot access the magnetometer
}
// direct read/write
ICM_20948_Status_e ICM_20948::read ( uint8_t reg, uint8_t* pdata, uint32_t len){
status = ICM_20948_execute_r( &_device, reg, pdata, len );
return status;
}
ICM_20948_Status_e ICM_20948::write ( uint8_t reg, uint8_t* pdata, uint32_t len){
status = ICM_20948_execute_w( &_device, reg, pdata, len );
return status;
}
byte ICM_20948_I2C::begin(bool fusion){
// Associate
_ad0 = ICM_20948_ARD_UNUSED_PIN;
_ad0val = false;
_addr = ICM_20948_I2C_ADDR_AD0;
if( _ad0val ){ _addr = ICM_20948_I2C_ADDR_AD1; }
// Set pinmodes
if(_ad0 != ICM_20948_ARD_UNUSED_PIN){ pinMode(_ad0, OUTPUT); }
// Set pins to default positions
if(_ad0 != ICM_20948_ARD_UNUSED_PIN){ digitalWrite(_ad0, _ad0val); }
if (!initI2C(100000)) return 0;
// Set up the serif
_serif.write = ICM_20948_write_I2C;
_serif.read = ICM_20948_read_I2C;
_serif.user = (void*)this; // refer to yourself in the user field
// Link the serif
_device._serif = &_serif;
// Perform default startup
status = startupDefault();
if( status != ICM_20948_Stat_Ok ){
return 0;
}
if (fusion && !quaterion) {
quaterion = new CQuaterion;
}
return 2;
}
ICM_20948_Status_e ICM_20948_I2C::startupMagnetometer ( void ){
// If using the magnetometer through passthrough:
i2cMasterPassthrough( true ); // Set passthrough mode to try to access the magnetometer (by default I2C master is disabled but you still have to enable the passthrough)
// Try to set up magnetometer
AK09916_CNTL2_Reg_t reg;
reg.MODE = AK09916_mode_cont_100hz;
ICM_20948_Status_e retval = writeMag( AK09916_REG_CNTL2, (uint8_t*)&reg, sizeof(AK09916_CNTL2_Reg_t) );
status = retval;
if(status == ICM_20948_Stat_Ok){
_has_magnetometer = true;
}
return status;
}
ICM_20948_Status_e ICM_20948_I2C::magWhoIAm( void ){
ICM_20948_Status_e retval = ICM_20948_Stat_Ok;
const uint8_t len = 2;
uint8_t whoiam[len];
retval = readMag( AK09916_REG_WIA1, whoiam, len );
status = retval;
if( retval != ICM_20948_Stat_Ok ){ return retval; }
if( (whoiam[0] == (MAG_AK09916_WHO_AM_I >> 8)) && ( whoiam[1] == (MAG_AK09916_WHO_AM_I & 0xFF)) ){
retval = ICM_20948_Stat_Ok;
status = retval;
return status;
}
retval = ICM_20948_Stat_WrongID;
status = retval;
return status;
}
bool ICM_20948_I2C::magIsConnected( void ){
if( magWhoIAm() != ICM_20948_Stat_Ok ){
return false;
}
return true;
}
ICM_20948_Status_e ICM_20948_I2C::getMagnetometerData ( ICM_20948_AGMT_t* pagmt ){
const uint8_t reqd_len = 9; // you must read all the way through the status2 register to re-enable the next measurement
uint8_t buff[reqd_len];
status = readMag( AK09916_REG_ST1, buff, reqd_len );
if( status != ICM_20948_Stat_Ok ){
return status;
}
pagmt->mag.axes.x = ((buff[2] << 8) | (buff[1] & 0xFF));
pagmt->mag.axes.y = ((buff[4] << 8) | (buff[3] & 0xFF));
pagmt->mag.axes.z = ((buff[6] << 8) | (buff[5] & 0xFF));
return status;
}
ICM_20948_Status_e ICM_20948_I2C::readMag( uint8_t reg, uint8_t* pdata, uint8_t len ){
// write sub-address
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( MAG_AK09916_I2C_ADDR << 1 ) | WRITE_BIT, ACK_CHECK_EN);
i2c_master_write_byte(cmd, reg, ACK_CHECK_EN);
i2c_master_stop(cmd);
esp_err_t ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
if (ret != ESP_OK) return ICM_20948_Stat_Err;
// read data
cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( MAG_AK09916_I2C_ADDR << 1 ) | READ_BIT, ACK_CHECK_EN);
if (len > 1) {
i2c_master_read(cmd, pdata, len - 1, ACK_VAL);
}
i2c_master_read_byte(cmd, pdata + len - 1, NACK_VAL);
i2c_master_stop(cmd);
ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
return ret == ESP_OK ? ICM_20948_Stat_Ok : ICM_20948_Stat_NoData;
}
ICM_20948_Status_e ICM_20948_I2C::writeMag( uint8_t reg, uint8_t* pdata, uint8_t len ){
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( MAG_AK09916_I2C_ADDR << 1 ) | WRITE_BIT, ACK_CHECK_EN);
i2c_master_write_byte(cmd, reg, ACK_CHECK_EN);
i2c_master_write(cmd, pdata, len, ACK_CHECK_DIS);
i2c_master_stop(cmd);
esp_err_t ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
return ret == ESP_OK ? ICM_20948_Stat_Ok : ICM_20948_Stat_Err;
}
bool ICM_20948_I2C::read(float* acc, float* gyr, float* mag, float* tmp, ORIENTATION* ori)
{
if(!dataReady() || ICM_20948_get_agmt( &_device, &agmt ) != ICM_20948_Stat_Ok){
return false;
}
if( _has_magnetometer ){
getMagnetometerData( &agmt );
}
if (acc) {
acc[0] = accX() / 1000;
acc[1] = accY() / 1000;
acc[2] = accZ() / 1000;
}
if (gyr) {
gyr[0] = gyrX();
gyr[1] = gyrY();
gyr[2] = gyrZ();
}
if (mag) {
mag[0] = magX();
mag[1] = magY();
mag[2] = magZ();
}
if (tmp) {
*tmp = temp();
}
if (quaterion && acc && gyr && mag) {
quaterion->MadgwickQuaternionUpdate(acc[0], acc[1], acc[2], gyr[0]*PI/180.0f, gyr[1]*PI/180.0f, gyr[2]*PI/180.0f, mag[0], mag[1], mag[2]);
quaterion->getOrientation(ori);
}
return true;
}