/************************************************************************* * Freematics MEMS motion sensor helper classes * Distributed under BSD license * Visit https://freematics.com for more information * (C)2016-2020 Stanley Huang *************************************************************************/ #include "FreematicsMEMS.h" #include #include "utility/ICM_20948_REGISTERS.h" #include "utility/AK09916_REGISTERS.h" #define WRITE_BIT I2C_MASTER_WRITE /*!< I2C master write */ #define READ_BIT I2C_MASTER_READ /*!< I2C master read */ #define ACK_CHECK_EN 0x1 /*!< I2C master will check ack from slave*/ #define ACK_CHECK_DIS 0x0 /*!< I2C master will not check ack from slave */ #define ACK_VAL (i2c_ack_type_t)0x0 /*!< I2C ack value */ #define NACK_VAL (i2c_ack_type_t)0x1 /*!< I2C nack value */ // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays" // (see http://www.x-io.co.uk/category/open-source/ for examples and more details) // which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute // device orientation void CQuaterion::MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz) { uint32_t now = millis(); deltat = ((float)(now - lastUpdate)/1000.0f); // set integration time by time elapsed since last filter update lastUpdate = now; float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability float norm; float hx, hy, _2bx, _2bz; float s1, s2, s3, s4; float qDot1, qDot2, qDot3, qDot4; // Auxiliary variables to avoid repeated arithmetic float _2q1mx; float _2q1my; float _2q1mz; float _2q2mx; float _4bx; float _4bz; float _2q1 = 2.0f * q1; float _2q2 = 2.0f * q2; float _2q3 = 2.0f * q3; float _2q4 = 2.0f * q4; float _2q1q3 = 2.0f * q1 * q3; float _2q3q4 = 2.0f * q3 * q4; float q1q1 = q1 * q1; float q1q2 = q1 * q2; float q1q3 = q1 * q3; float q1q4 = q1 * q4; float q2q2 = q2 * q2; float q2q3 = q2 * q3; float q2q4 = q2 * q4; float q3q3 = q3 * q3; float q3q4 = q3 * q4; float q4q4 = q4 * q4; // Normalise accelerometer measurement norm = sqrtf(ax * ax + ay * ay + az * az); if (norm == 0.0f) return; // handle NaN norm = 1.0f/norm; ax *= norm; ay *= norm; az *= norm; // Normalise magnetometer measurement norm = sqrtf(mx * mx + my * my + mz * mz); if (norm == 0.0f) return; // handle NaN norm = 1.0f/norm; mx *= norm; my *= norm; mz *= norm; // Reference direction of Earth's magnetic field _2q1mx = 2.0f * q1 * mx; _2q1my = 2.0f * q1 * my; _2q1mz = 2.0f * q1 * mz; _2q2mx = 2.0f * q2 * mx; hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4; hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4; _2bx = sqrtf(hx * hx + hy * hy); _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4; _4bx = 2.0f * _2bx; _4bz = 2.0f * _2bz; // Gradient decent algorithm corrective step s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); norm = sqrtf(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude norm = 1.0f/norm; s1 *= norm; s2 *= norm; s3 *= norm; s4 *= norm; // Compute rate of change of quaternion qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1; qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2; qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3; qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4; // Integrate to yield quaternion q1 += qDot1 * deltat; q2 += qDot2 * deltat; q3 += qDot3 * deltat; q4 += qDot4 * deltat; norm = sqrtf(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion norm = 1.0f/norm; q[0] = q1 * norm; q[1] = q2 * norm; q[2] = q3 * norm; q[3] = q4 * norm; } void CQuaterion::getOrientation(ORIENTATION* ori) { ori->yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]) * 180.0f / PI; ori->pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])) * 180.0f / PI; ori->roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]) * 180.0f / PI; } /******************************************************************************* Base I2C MEMS class *******************************************************************************/ #define WRITE_BIT I2C_MASTER_WRITE /*!< I2C master write */ #define READ_BIT I2C_MASTER_READ /*!< I2C master read */ #define ACK_CHECK_EN 0x1 /*!< I2C master will check ack from slave*/ #define ACK_CHECK_DIS 0x0 /*!< I2C master will not check ack from slave */ #define ACK_VAL (i2c_ack_type_t)0x0 /*!< I2C ack value */ #define NACK_VAL (i2c_ack_type_t)0x1 /*!< I2C nack value */ bool MEMS_I2C::initI2C(unsigned long clock) { i2c_port_t i2c_master_port = I2C_NUM_0; i2c_config_t conf = { .mode = I2C_MODE_MASTER, #ifdef ARDUINO_ESP32C3_DEV .sda_io_num = 4, .scl_io_num = 5, #else .sda_io_num = 21, .scl_io_num = 22, #endif .sda_pullup_en = GPIO_PULLUP_ENABLE, .scl_pullup_en = GPIO_PULLUP_ENABLE, }; conf.master.clk_speed = clock; return i2c_param_config(i2c_master_port, &conf) == ESP_OK && i2c_driver_install(i2c_master_port, conf.mode, 0, 0, 0) == ESP_OK; } void MEMS_I2C::uninitI2C() { i2c_driver_delete((i2c_port_t)I2C_NUM_0); } /******************************************************************************* MPU-9250 class functions *******************************************************************************/ //============================================================================== //====== Set of useful function to access acceleration. gyroscope, magnetometer, //====== and temperature data //============================================================================== void MPU9250::readAccelData(int16_t * destination) { uint8_t rawData[6]; // x/y/z accel register data stored here readBytes(ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a signed 16-bit value destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ; destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ; } void MPU9250::readGyroData(int16_t * destination) { uint8_t rawData[6]; // x/y/z gyro register data stored here readBytes(GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a signed 16-bit value destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ; destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ; } void MPU9250::readMagData(int16_t * destination) { if(readByteAK(AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition readBytesAK(AK8963_XOUT_L, 7, rawData); // Read the six raw data and ST2 registers sequentially into data array uint8_t c = rawData[6]; // End data read by reading ST2 register if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ; // Data stored as little Endian destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ; } } } int16_t MPU9250::readTempData() { uint8_t rawData[2]; // x/y/z gyro register data stored here readBytes(TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array return ((int16_t)rawData[0] << 8) | rawData[1]; // Turn the MSB and LSB into a 16-bit value } bool MPU9250::initAK8963(float * destination) { if (readByteAK(WHO_AM_I_AK8963) != 0x48) { return false; } // First extract the factory calibration for each magnetometer axis uint8_t rawData[3]; // x/y/z gyro calibration data stored here writeByteAK(AK8963_CNTL, 0x00); // Power down magnetometer delay(10); writeByteAK(AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode delay(10); // Read the x-, y-, and z-axis calibration values /* if (!readBytesAK(AK8963_ASAX, 3, &rawData[0], 3000)) { return false; } */ rawData[0] = readByteAK(AK8963_ASAX); rawData[1] = readByteAK(AK8963_ASAY); rawData[2] = readByteAK(AK8963_ASAZ); destination[0] = (float)(rawData[0] - 128)/256. + 1.; // Return x-axis sensitivity adjustment values, etc. destination[1] = (float)(rawData[1] - 128)/256. + 1.; destination[2] = (float)(rawData[2] - 128)/256. + 1.; writeByteAK(AK8963_CNTL, 0x00); // Power down magnetometer delay(10); // Configure the magnetometer for continuous read and highest resolution // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register, // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates writeByteAK(AK8963_CNTL, MFS_16BITS << 4 | Mmode); // Set magnetometer data resolution and sample ODR delay(10); return true; } // Function which accumulates gyro and accelerometer data after device // initialization. It calculates the average of the at-rest readings and then // loads the resulting offsets into accelerometer and gyro bias registers. void MPU9250::calibrateMPU9250(float * gyroBias, float * accelBias) { uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data uint16_t ii, packet_count, fifo_count; int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0}; // reset device // Write a one to bit 7 reset bit; toggle reset device writeByte(PWR_MGMT_1, 0x80); delay(100); // get stable time source; Auto select clock source to be PLL gyroscope // reference if ready else use the internal oscillator, bits 2:0 = 001 writeByte(PWR_MGMT_1, 0x01); writeByte(PWR_MGMT_2, 0x00); delay(200); // Configure device for bias calculation writeByte(INT_ENABLE, 0x00); // Disable all interrupts writeByte(FIFO_EN, 0x00); // Disable FIFO writeByte(PWR_MGMT_1, 0x00); // Turn on internal clock source writeByte(I2C_MST_CTRL, 0x00); // Disable master writeByte(USER_CTRL, 0x00); // Disable FIFO and I2C master modes writeByte(USER_CTRL, 0x2C); // Reset FIFO and DMP delay(15); // Configure MPU6050 gyro and accelerometer for bias calculation writeByte(CONFIG, 0x01); // Set low-pass filter to 188 Hz writeByte(SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz writeByte(GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity writeByte(ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec uint16_t accelsensitivity = 16384; // = 16384 LSB/g // Configure FIFO to capture accelerometer and gyro data for bias calculation writeByte(USER_CTRL, 0x40); // Enable FIFO writeByte(FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9150) delay(40); // accumulate 40 samples in 40 milliseconds = 480 bytes // At end of sample accumulation, turn off FIFO sensor read writeByte(FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO readBytes(FIFO_COUNTH, 2, &data[0]); // read FIFO sample count fifo_count = ((uint16_t)data[0] << 8) | data[1]; packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging for (ii = 0; ii < packet_count; ii++) { int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0}; readBytes(FIFO_R_W, 12, &data[0]); // read data for averaging accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ); // Form signed 16-bit integer for each sample in FIFO accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ); accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ); gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ); gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ); gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]); accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases accel_bias[1] += (int32_t) accel_temp[1]; accel_bias[2] += (int32_t) accel_temp[2]; gyro_bias[0] += (int32_t) gyro_temp[0]; gyro_bias[1] += (int32_t) gyro_temp[1]; gyro_bias[2] += (int32_t) gyro_temp[2]; } accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases accel_bias[1] /= (int32_t) packet_count; accel_bias[2] /= (int32_t) packet_count; gyro_bias[0] /= (int32_t) packet_count; gyro_bias[1] /= (int32_t) packet_count; gyro_bias[2] /= (int32_t) packet_count; if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation else {accel_bias[2] += (int32_t) accelsensitivity;} // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF; data[3] = (-gyro_bias[1]/4) & 0xFF; data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF; data[5] = (-gyro_bias[2]/4) & 0xFF; // Push gyro biases to hardware registers writeByte(XG_OFFSET_H, data[0]); writeByte(XG_OFFSET_L, data[1]); writeByte(YG_OFFSET_H, data[2]); writeByte(YG_OFFSET_L, data[3]); writeByte(ZG_OFFSET_H, data[4]); writeByte(ZG_OFFSET_L, data[5]); // Output scaled gyro biases for display in the main program gyroBias[0] = (float) gyro_bias[0]/(float) gyrosensitivity; gyroBias[1] = (float) gyro_bias[1]/(float) gyrosensitivity; gyroBias[2] = (float) gyro_bias[2]/(float) gyrosensitivity; // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that // the accelerometer biases calculated above must be divided by 8. int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases readBytes(XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values accel_bias_reg[0] = (int32_t) (((int16_t)data[0] << 8) | data[1]); readBytes(YA_OFFSET_H, 2, &data[0]); accel_bias_reg[1] = (int32_t) (((int16_t)data[0] << 8) | data[1]); readBytes(ZA_OFFSET_H, 2, &data[0]); accel_bias_reg[2] = (int32_t) (((int16_t)data[0] << 8) | data[1]); uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis for(ii = 0; ii < 3; ii++) { if((accel_bias_reg[ii] & mask)) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit } // Construct total accelerometer bias, including calculated average accelerometer bias from above accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale) accel_bias_reg[1] -= (accel_bias[1]/8); accel_bias_reg[2] -= (accel_bias[2]/8); data[0] = (accel_bias_reg[0] >> 8) & 0xFF; data[1] = (accel_bias_reg[0]) & 0xFF; data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers data[2] = (accel_bias_reg[1] >> 8) & 0xFF; data[3] = (accel_bias_reg[1]) & 0xFF; data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers data[4] = (accel_bias_reg[2] >> 8) & 0xFF; data[5] = (accel_bias_reg[2]) & 0xFF; data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers // Apparently this is not working for the acceleration biases in the MPU-9250 // Are we handling the temperature correction bit properly? // Push accelerometer biases to hardware registers writeByte(XA_OFFSET_H, data[0]); writeByte(XA_OFFSET_L, data[1]); writeByte(YA_OFFSET_H, data[2]); writeByte(YA_OFFSET_L, data[3]); writeByte(ZA_OFFSET_H, data[4]); writeByte(ZA_OFFSET_L, data[5]); // Output scaled accelerometer biases for display in the main program accelBias[0] = (float)accel_bias[0]/(float)accelsensitivity; accelBias[1] = (float)accel_bias[1]/(float)accelsensitivity; accelBias[2] = (float)accel_bias[2]/(float)accelsensitivity; } // Accelerometer and gyroscope self test; check calibration wrt factory settings void MPU9250::MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass { uint8_t rawData[6] = {0, 0, 0, 0, 0, 0}; uint8_t selfTest[6]; int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3]; float factoryTrim[6]; uint8_t FS = 0; writeByte(SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz writeByte(CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz writeByte(GYRO_CONFIG, 1< 1) { i2c_master_read(cmd, dest, count - 1, ACK_VAL); } i2c_master_read_byte(cmd, dest + count - 1, NACK_VAL); i2c_master_stop(cmd); ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS); i2c_cmd_link_delete(cmd); return ret == ESP_OK; } void MPU9250::writeByteAK(uint8_t subAddress, uint8_t data) { i2c_cmd_handle_t cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, ( AK8963_ADDRESS << 1 ) | WRITE_BIT, ACK_CHECK_EN); // write sub-address and data uint8_t buf[2] = {subAddress, data}; i2c_master_write(cmd, buf, sizeof(buf), ACK_CHECK_EN); i2c_master_stop(cmd); i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS); i2c_cmd_link_delete(cmd); } uint8_t MPU9250::readByteAK(uint8_t subAddress) { // write sub-address i2c_cmd_handle_t cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, ( AK8963_ADDRESS << 1 ) | WRITE_BIT, ACK_CHECK_DIS); i2c_master_write_byte(cmd, subAddress, ACK_CHECK_EN); i2c_master_stop(cmd); i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS); i2c_cmd_link_delete(cmd); // read data uint8_t data = 0; cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, ( AK8963_ADDRESS << 1 ) | READ_BIT, ACK_CHECK_EN); i2c_master_read_byte(cmd, &data, NACK_VAL); i2c_master_stop(cmd); i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS); i2c_cmd_link_delete(cmd); return data; } bool MPU9250::readBytesAK(uint8_t subAddress, uint8_t count, uint8_t * dest) { // write sub-address i2c_cmd_handle_t cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, ( AK8963_ADDRESS << 1 ) | WRITE_BIT, ACK_CHECK_DIS); i2c_master_write_byte(cmd, subAddress, ACK_CHECK_EN); i2c_master_stop(cmd); esp_err_t ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS); i2c_cmd_link_delete(cmd); if (ret != ESP_OK) return false; // read data cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, ( AK8963_ADDRESS << 1 ) | READ_BIT, ACK_CHECK_EN); if (count > 1) { i2c_master_read(cmd, dest, count - 1, ACK_VAL); } i2c_master_read_byte(cmd, dest + count - 1, NACK_VAL); i2c_master_stop(cmd); ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS); i2c_cmd_link_delete(cmd); return ret == ESP_OK; } void MPU9250::init() { // wake up device writeByte(PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors delay(100); // Wait for all registers to reset // get stable time source writeByte(PWR_MGMT_1, 0x01); // Auto select clock source to be PLL gyroscope reference if ready else delay(200); // Configure Gyro and Thermometer // Disable FSYNC and set thermometer and gyro bandwidth to 41 and 42 Hz, respectively; // minimum delay time for this setting is 5.9 ms, which means sensor fusion update rates cannot // be higher than 1 / 0.0059 = 170 Hz // DLPF_CFG = bits 2:0 = 011; this limits the sample rate to 1000 Hz for both // With the MPU9250, it is possible to get gyro sample rates of 32 kHz (!), 8 kHz, or 1 kHz writeByte(CONFIG, 0x03); // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV) writeByte(SMPLRT_DIV, 0x04); // Use a 200 Hz rate; a rate consistent with the filter update rate // determined inset in CONFIG above // Set gyroscope full scale range // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3 uint8_t c = readByte(GYRO_CONFIG); // get current GYRO_CONFIG register value // c = c & ~0xE0; // Clear self-test bits [7:5] c = c & ~0x02; // Clear Fchoice bits [1:0] c = c & ~0x18; // Clear AFS bits [4:3] c = c | Gscale << 3; // Set full scale range for the gyro // c =| 0x00; // Set Fchoice for the gyro to 11 by writing its inverse to bits 1:0 of GYRO_CONFIG writeByte(GYRO_CONFIG, c ); // Write new GYRO_CONFIG value to register // Set accelerometer full-scale range configuration c = readByte(ACCEL_CONFIG); // get current ACCEL_CONFIG register value // c = c & ~0xE0; // Clear self-test bits [7:5] c = c & ~0x18; // Clear AFS bits [4:3] c = c | Ascale << 3; // Set full scale range for the accelerometer writeByte(ACCEL_CONFIG, c); // Write new ACCEL_CONFIG register value // Set accelerometer sample rate configuration // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz c = readByte(ACCEL_CONFIG2); // get current ACCEL_CONFIG2 register value c = c & ~0x0F; // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0]) c = c | 0x03; // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz writeByte(ACCEL_CONFIG2, c); // Write new ACCEL_CONFIG2 register value // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates, // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting // Configure Interrupts and Bypass Enable // Set interrupt pin active high, push-pull, hold interrupt pin level HIGH until interrupt cleared, // clear on read of INT_STATUS, and enable I2C_BYPASS_EN so additional chips // can join the I2C bus and all can be controlled by the Arduino as master writeByte(INT_PIN_CFG, 0x22); writeByte(INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt delay(100); } byte MPU9250::begin(bool fusion) { if (!initI2C(100000)) return 0; byte ret = 0; for (byte attempt = 0; attempt < 2; attempt++) { //float SelfTest[6]; //MPU9250SelfTest(SelfTest); byte c = readByte(WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250 if (c != 0x68 && c != 0x71) continue; calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers init(); if (c == 0x71 && initAK8963(magCalibration)) ret = 2; else ret = 1; break; } if (ret && fusion && !quaterion) { quaterion = new CQuaterion; } return ret; } bool MPU9250::read(float* acc, float* gyr, float* mag, float* temp, ORIENTATION* ori) { if (acc) { readAccelData(accelCount); acc[0] = (float)accelCount[0]*aRes; // - accelBias[0]; // get actual g value, this depends on scale being set acc[1] = (float)accelCount[1]*aRes; // - accelBias[1]; acc[2] = (float)accelCount[2]*aRes; // - accelBias[2]; } if (gyr) { readGyroData(gyroCount); gyr[0] = (float)gyroCount[0]*gRes; // get actual gyro value, this depends on scale being set gyr[1] = (float)gyroCount[1]*gRes; gyr[2] = (float)gyroCount[2]*gRes; } if (mag) { float magbias[3]; magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated magbias[1] = +120.; // User environmental x-axis correction in milliGauss magbias[2] = +125.; // User environmental x-axis correction in milliGauss // Calculate the magnetometer values in milliGauss // Include factory calibration per data sheet and user environmental corrections readMagData(magCount); mag[0] = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set mag[1] = (float)magCount[1]*mRes*magCalibration[1] - magbias[1]; mag[2] = (float)magCount[2]*mRes*magCalibration[2] - magbias[2]; } if (temp) { int t = readTempData(); *temp = (float)t / 333.87 + 21; } if (quaterion && acc && gyr && mag) { quaterion->MadgwickQuaternionUpdate(acc[0], acc[1], acc[2], gyr[0]*PI/180.0f, gyr[1]*PI/180.0f, gyr[2]*PI/180.0f, mag[0], mag[1], mag[2]); quaterion->getOrientation(ori); } return true; } /******************************************************************************* ICM-42627 class functions *******************************************************************************/ byte ICM_42627::begin(bool fusion) { if (!initI2C(100000) || readByte(WHO_AM_I_ICM42627) != ICM_42627_DeviceID) return 0; init(); return 1; } void ICM_42627::init() { writeByte(PWR_MGMT0_REG, TEMP_DIS_ON | IDLE_ON | ACCEL_MODE_LN | GYRO_MODE_LN ); delay(100); writeByte(ACCEL_CONFIG0_REG, ACCEL_ODR_1KHZ | ACCEL_FS_SEL_2G); // Auto select clock source to be PLL gyroscope reference if ready else delay(100); writeByte(GYRO_CONFIG0_REG, GYRO_ODR_1KHZ | GYRO_FS_SEL_250dps); delay(100); writeByte(SELF_TEST_CONFIG_REG, 0x07); delay(100); } void ICM_42627::writeByte(uint8_t subAddress, uint8_t data) { i2c_cmd_handle_t cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, ( ICM_42627_ADDRESS << 1 ) | WRITE_BIT, ACK_CHECK_EN); // write sub-address and data uint8_t buf[2] = {subAddress, data}; i2c_master_write(cmd, buf, sizeof(buf), ACK_CHECK_EN); i2c_master_stop(cmd); i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS); i2c_cmd_link_delete(cmd); } uint8_t ICM_42627::readByte(uint8_t subAddress) { // write sub-address i2c_cmd_handle_t cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, ( ICM_42627_ADDRESS << 1 ) | WRITE_BIT, ACK_CHECK_DIS); i2c_master_write_byte(cmd, subAddress, ACK_CHECK_EN); i2c_master_stop(cmd); i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS); i2c_cmd_link_delete(cmd); // read data uint8_t data = 0; cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, ( ICM_42627_ADDRESS << 1 ) | READ_BIT, ACK_CHECK_EN); i2c_master_read_byte(cmd, &data, NACK_VAL); i2c_master_stop(cmd); i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS); i2c_cmd_link_delete(cmd); return data; } bool ICM_42627::readBytes(uint8_t subAddress, uint8_t count, uint8_t * dest) { // write sub-address i2c_cmd_handle_t cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, ( ICM_42627_ADDRESS << 1 ) | WRITE_BIT, ACK_CHECK_DIS); i2c_master_write_byte(cmd, subAddress, ACK_CHECK_EN); i2c_master_stop(cmd); esp_err_t ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS); i2c_cmd_link_delete(cmd); if (ret != ESP_OK) return false; // read data cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, ( ICM_42627_ADDRESS << 1 ) | READ_BIT, ACK_CHECK_EN); if (count > 1) { i2c_master_read(cmd, dest, count - 1, ACK_VAL); } i2c_master_read_byte(cmd, dest + count - 1, NACK_VAL); i2c_master_stop(cmd); ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS); i2c_cmd_link_delete(cmd); return ret == ESP_OK; } void ICM_42627::readAccelData(int16_t data[]) { uint8_t rawData[6]; // x/y/z accel register data stored here readBytes(ACCEL_XOUT_H_REG, 6, &rawData[0]); // Read the six raw data registers into data array data[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a signed 16-bit value data[1] = ((int16_t)rawData[2] << 8) | rawData[3] ; data[2] = ((int16_t)rawData[4] << 8) | rawData[5] ; } int16_t ICM_42627::readTempData() { uint8_t rawData[2]; // x/y/z gyro register data stored here readBytes(TEMP_OUT_H_REG, 2, &rawData[0]); // Read the two raw data registers sequentially into data array return ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a 16-bit value } void ICM_42627::readGyroData(int16_t data[]) { uint8_t rawData[6]; // x/y/z gyro register data stored here readBytes(GYRO_XOUT_H_REG, 6, &rawData[0]); // Read the six raw data registers sequentially into data array data[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a signed 16-bit value data[1] = ((int16_t)rawData[2] << 8) | rawData[3] ; data[2] = ((int16_t)rawData[4] << 8) | rawData[5] ; } bool ICM_42627::read(float* acc, float* gyr, float* mag, float* temp, ORIENTATION* ori) { if (acc) { int16_t accelCount[3] = {0}; readAccelData(accelCount); acc[0] = (float)accelCount[0]*aRes; // - accelBias[0]; // get actual g value, this depends on scale being set acc[1] = (float)accelCount[1]*aRes; // - accelBias[1]; acc[2] = (float)accelCount[2]*aRes; // - accelBias[2]; } if (gyr) { int16_t gyroCount[3] = {0}; readGyroData(gyroCount); gyr[0] = (float)gyroCount[0]*gRes; // get actual gyro value, this depends on scale being set gyr[1] = (float)gyroCount[1]*gRes; gyr[2] = (float)gyroCount[2]*gRes; } if (temp) { *temp = (float)readTempData() / 132.48 + 25.0; } return true; } /******************************************************************************* ICM-20948 class functions *******************************************************************************/ // serif functions for the I2C and SPI classes ICM_20948_Status_e ICM_20948_write_I2C(uint8_t reg, uint8_t* data, uint32_t len, void* user){ if(user == NULL){ return ICM_20948_Stat_ParamErr; } uint8_t addr = ((ICM_20948_I2C*)user)->_addr; i2c_cmd_handle_t cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, ( addr << 1 ) | WRITE_BIT, ACK_CHECK_EN); i2c_master_write_byte(cmd, reg, ACK_CHECK_EN); i2c_master_write(cmd, data, len, ACK_CHECK_DIS); i2c_master_stop(cmd); esp_err_t ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS); i2c_cmd_link_delete(cmd); return ret == ESP_OK ? ICM_20948_Stat_Ok : ICM_20948_Stat_Err; } ICM_20948_Status_e ICM_20948_read_I2C(uint8_t reg, uint8_t* buff, uint32_t len, void* user){ if(user == NULL){ return ICM_20948_Stat_ParamErr; } uint8_t addr = ((ICM_20948_I2C*)user)->_addr; // write sub-address i2c_cmd_handle_t cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, ( addr << 1 ) | WRITE_BIT, ACK_CHECK_EN); i2c_master_write_byte(cmd, reg, ACK_CHECK_EN); i2c_master_stop(cmd); esp_err_t ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS); i2c_cmd_link_delete(cmd); if (ret != ESP_OK) return ICM_20948_Stat_Err; // read data cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, ( addr << 1 ) | READ_BIT, ACK_CHECK_EN); if (len > 1) { i2c_master_read(cmd, buff, len - 1, ACK_VAL); } i2c_master_read_byte(cmd, buff + len - 1, NACK_VAL); i2c_master_stop(cmd); ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS); i2c_cmd_link_delete(cmd); return ret == ESP_OK ? ICM_20948_Stat_Ok : ICM_20948_Stat_NoData; } ICM_20948_AGMT_t ICM_20948::getAGMT ( void ){ status = ICM_20948_get_agmt( &_device, &agmt ); if( _has_magnetometer ){ getMagnetometerData( &agmt ); } return agmt; } float ICM_20948::magX ( void ){ return getMagUT(agmt.mag.axes.x); } float ICM_20948::magY ( void ){ return getMagUT(agmt.mag.axes.y); } float ICM_20948::magZ ( void ){ return getMagUT(agmt.mag.axes.z); } float ICM_20948::getMagUT ( int16_t axis_val ){ return (((float)axis_val)*0.15); } float ICM_20948::accX ( void ){ return getAccMG(agmt.acc.axes.x); } float ICM_20948::accY ( void ){ return getAccMG(agmt.acc.axes.y); } float ICM_20948::accZ ( void ){ return getAccMG(agmt.acc.axes.z); } float ICM_20948::getAccMG ( int16_t axis_val ){ switch(agmt.fss.a){ case 0 : return (((float)axis_val)/16.384); break; case 1 : return (((float)axis_val)/8.192); break; case 2 : return (((float)axis_val)/4.096); break; case 3 : return (((float)axis_val)/2.048); break; default : return 0; break; } } float ICM_20948::gyrX ( void ){ return getGyrDPS(agmt.gyr.axes.x); } float ICM_20948::gyrY ( void ){ return getGyrDPS(agmt.gyr.axes.y); } float ICM_20948::gyrZ ( void ){ return getGyrDPS(agmt.gyr.axes.z); } float ICM_20948::getGyrDPS ( int16_t axis_val ){ switch(agmt.fss.g){ case 0 : return (((float)axis_val)/131); break; case 1 : return (((float)axis_val)/65.5); break; case 2 : return (((float)axis_val)/32.8); break; case 3 : return (((float)axis_val)/16.4); break; default : return 0; break; } } float ICM_20948::temp ( void ){ return getTempC(agmt.tmp.val); } float ICM_20948::getTempC ( int16_t val ){ return (((float)val)/333.87) + 21; } const char* ICM_20948::statusString ( ICM_20948_Status_e stat ){ ICM_20948_Status_e val; if( stat == ICM_20948_Stat_NUM){ val = status; }else{ val = stat; } switch(val){ case ICM_20948_Stat_Ok : return "All is well."; break; case ICM_20948_Stat_Err : return "General Error"; break; case ICM_20948_Stat_NotImpl : return "Not Implemented"; break; case ICM_20948_Stat_ParamErr : return "Parameter Error"; break; case ICM_20948_Stat_WrongID : return "Wrong ID"; break; case ICM_20948_Stat_InvalSensor : return "Invalid Sensor"; break; case ICM_20948_Stat_NoData : return "Data Underflow"; break; case ICM_20948_Stat_SensorNotSupported : return "Sensor Not Supported"; break; default : return "Unknown Status"; break; } return "None"; } // Device Level ICM_20948_Status_e ICM_20948::setBank ( uint8_t bank ){ status = ICM_20948_set_bank( &_device, bank ); return status; } ICM_20948_Status_e ICM_20948::swReset ( void ){ status = ICM_20948_sw_reset( &_device ); return status; } ICM_20948_Status_e ICM_20948::sleep ( bool on ){ status = ICM_20948_sleep( &_device, on ); return status; } ICM_20948_Status_e ICM_20948::lowPower ( bool on ){ status = ICM_20948_low_power( &_device, on ); return status; } ICM_20948_Status_e ICM_20948::setClockSource ( ICM_20948_PWR_MGMT_1_CLKSEL_e source ){ status = ICM_20948_set_clock_source( &_device, source ); return status; } ICM_20948_Status_e ICM_20948::checkID ( void ){ status = ICM_20948_check_id( &_device ); return status; } bool ICM_20948::dataReady ( void ){ status = ICM_20948_data_ready( &_device ); if( status == ICM_20948_Stat_Ok ){ return true; } return false; } uint8_t ICM_20948::getWhoAmI ( void ){ uint8_t retval = 0x00; status = ICM_20948_get_who_am_i( &_device, &retval ); return retval; } bool ICM_20948::isConnected ( void ){ status = checkID(); if( status == ICM_20948_Stat_Ok ){ return true; } return false; } // Internal Sensor Options ICM_20948_Status_e ICM_20948::setSampleMode ( uint8_t sensor_id_bm, uint8_t lp_config_cycle_mode ){ status = ICM_20948_set_sample_mode( &_device, (ICM_20948_InternalSensorID_bm)sensor_id_bm, (ICM_20948_LP_CONFIG_CYCLE_e)lp_config_cycle_mode ); return status; } ICM_20948_Status_e ICM_20948::setFullScale ( uint8_t sensor_id_bm, ICM_20948_fss_t fss ){ status = ICM_20948_set_full_scale( &_device, (ICM_20948_InternalSensorID_bm)sensor_id_bm, fss ); return status; } ICM_20948_Status_e ICM_20948::setDLPFcfg ( uint8_t sensor_id_bm, ICM_20948_dlpcfg_t cfg ){ status = ICM_20948_set_dlpf_cfg( &_device, (ICM_20948_InternalSensorID_bm)sensor_id_bm, cfg ); return status; } ICM_20948_Status_e ICM_20948::enableDLPF ( uint8_t sensor_id_bm, bool enable ){ status = ICM_20948_enable_dlpf( &_device, (ICM_20948_InternalSensorID_bm)sensor_id_bm, enable ); return status; } ICM_20948_Status_e ICM_20948::setSampleRate ( uint8_t sensor_id_bm, ICM_20948_smplrt_t smplrt ){ status = ICM_20948_set_sample_rate( &_device, (ICM_20948_InternalSensorID_bm)sensor_id_bm, smplrt ); return status; } // Interrupts on INT Pin ICM_20948_Status_e ICM_20948::clearInterrupts ( void ){ ICM_20948_INT_STATUS_t int_stat; ICM_20948_INT_STATUS_1_t int_stat_1; // read to clear interrupts status = ICM_20948_set_bank( &_device, 0 ); if( status != ICM_20948_Stat_Ok ){ return status; } status = ICM_20948_execute_r( &_device, AGB0_REG_INT_STATUS, (uint8_t*)&int_stat, sizeof(ICM_20948_INT_STATUS_t) ); if( status != ICM_20948_Stat_Ok ){ return status; } status = ICM_20948_execute_r( &_device, AGB0_REG_INT_STATUS_1, (uint8_t*)&int_stat_1, sizeof(ICM_20948_INT_STATUS_1_t) ); if( status != ICM_20948_Stat_Ok ){ return status; } // todo: there may be additional interrupts that need to be cleared, like FIFO overflow/watermark return status; } ICM_20948_Status_e ICM_20948::cfgIntActiveLow ( bool active_low ){ ICM_20948_INT_PIN_CFG_t reg; status = ICM_20948_int_pin_cfg ( &_device, NULL, ® ); // read phase if(status != ICM_20948_Stat_Ok){ return status; } reg.INT1_ACTL = active_low; // set the setting status = ICM_20948_int_pin_cfg ( &_device, ®, NULL ); // write phase if(status != ICM_20948_Stat_Ok){ return status; } return status; } ICM_20948_Status_e ICM_20948::cfgIntOpenDrain ( bool open_drain ){ ICM_20948_INT_PIN_CFG_t reg; status = ICM_20948_int_pin_cfg ( &_device, NULL, ® ); // read phase if(status != ICM_20948_Stat_Ok){ return status; } reg.INT1_OPEN = open_drain; // set the setting status = ICM_20948_int_pin_cfg ( &_device, ®, NULL ); // write phase if(status != ICM_20948_Stat_Ok){ return status; } return status; } ICM_20948_Status_e ICM_20948::cfgIntLatch ( bool latching ){ ICM_20948_INT_PIN_CFG_t reg; status = ICM_20948_int_pin_cfg ( &_device, NULL, ® ); // read phase if(status != ICM_20948_Stat_Ok){ return status; } reg.INT1_LATCH_EN = latching; // set the setting status = ICM_20948_int_pin_cfg ( &_device, ®, NULL ); // write phase if(status != ICM_20948_Stat_Ok){ return status; } return status; } ICM_20948_Status_e ICM_20948::cfgIntAnyReadToClear ( bool enabled ){ ICM_20948_INT_PIN_CFG_t reg; status = ICM_20948_int_pin_cfg ( &_device, NULL, ® ); // read phase if(status != ICM_20948_Stat_Ok){ return status; } reg.INT_ANYRD_2CLEAR = enabled; // set the setting status = ICM_20948_int_pin_cfg ( &_device, ®, NULL ); // write phase if(status != ICM_20948_Stat_Ok){ return status; } return status; } ICM_20948_Status_e ICM_20948::cfgFsyncActiveLow ( bool active_low ){ ICM_20948_INT_PIN_CFG_t reg; status = ICM_20948_int_pin_cfg ( &_device, NULL, ® ); // read phase if(status != ICM_20948_Stat_Ok){ return status; } reg.ACTL_FSYNC = active_low; // set the setting status = ICM_20948_int_pin_cfg ( &_device, ®, NULL ); // write phase if(status != ICM_20948_Stat_Ok){ return status; } return status; } ICM_20948_Status_e ICM_20948::cfgFsyncIntMode ( bool interrupt_mode ){ ICM_20948_INT_PIN_CFG_t reg; status = ICM_20948_int_pin_cfg ( &_device, NULL, ® ); // read phase if(status != ICM_20948_Stat_Ok){ return status; } reg.FSYNC_INT_MODE_EN = interrupt_mode; // set the setting status = ICM_20948_int_pin_cfg ( &_device, ®, NULL ); // write phase if(status != ICM_20948_Stat_Ok){ return status; } return status; } // All these individual functions will use a read->set->write method to leave other settings untouched ICM_20948_Status_e ICM_20948::intEnableI2C ( bool enable ){ ICM_20948_INT_enable_t en; // storage status = ICM_20948_int_enable( &_device, NULL, &en ); // read phase if( status != ICM_20948_Stat_Ok ){ return status; } en.I2C_MST_INT_EN = enable; // change the setting status = ICM_20948_int_enable( &_device, &en, &en ); // write phase w/ readback if( status != ICM_20948_Stat_Ok ){ return status; } if( en.I2C_MST_INT_EN != enable ){ status = ICM_20948_Stat_Err; return status; } return status; } ICM_20948_Status_e ICM_20948::intEnableDMP ( bool enable ){ ICM_20948_INT_enable_t en; // storage status = ICM_20948_int_enable( &_device, NULL, &en ); // read phase if( status != ICM_20948_Stat_Ok ){ return status; } en.DMP_INT1_EN = enable; // change the setting status = ICM_20948_int_enable( &_device, &en, &en ); // write phase w/ readback if( status != ICM_20948_Stat_Ok ){ return status; } if( en.DMP_INT1_EN != enable ){ status = ICM_20948_Stat_Err; return status; } return status; } ICM_20948_Status_e ICM_20948::intEnablePLL ( bool enable ){ ICM_20948_INT_enable_t en; // storage status = ICM_20948_int_enable( &_device, NULL, &en ); // read phase if( status != ICM_20948_Stat_Ok ){ return status; } en.PLL_RDY_EN = enable; // change the setting status = ICM_20948_int_enable( &_device, &en, &en ); // write phase w/ readback if( status != ICM_20948_Stat_Ok ){ return status; } if( en.PLL_RDY_EN != enable ){ status = ICM_20948_Stat_Err; return status; } return status; } ICM_20948_Status_e ICM_20948::intEnableWOM ( bool enable ){ ICM_20948_INT_enable_t en; // storage status = ICM_20948_int_enable( &_device, NULL, &en ); // read phase if( status != ICM_20948_Stat_Ok ){ return status; } en.WOM_INT_EN = enable; // change the setting status = ICM_20948_int_enable( &_device, &en, &en ); // write phase w/ readback if( status != ICM_20948_Stat_Ok ){ return status; } if( en.WOM_INT_EN != enable ){ status = ICM_20948_Stat_Err; return status; } return status; } ICM_20948_Status_e ICM_20948::intEnableWOF ( bool enable ){ ICM_20948_INT_enable_t en; // storage status = ICM_20948_int_enable( &_device, NULL, &en ); // read phase if( status != ICM_20948_Stat_Ok ){ return status; } en.REG_WOF_EN = enable; // change the setting status = ICM_20948_int_enable( &_device, &en, &en ); // write phase w/ readback if( status != ICM_20948_Stat_Ok ){ return status; } if( en.REG_WOF_EN != enable ){ status = ICM_20948_Stat_Err; return status; } return status; } ICM_20948_Status_e ICM_20948::intEnableRawDataReady ( bool enable ){ ICM_20948_INT_enable_t en; // storage status = ICM_20948_int_enable( &_device, NULL, &en ); // read phase if( status != ICM_20948_Stat_Ok ){ return status; } en.RAW_DATA_0_RDY_EN = enable; // change the setting status = ICM_20948_int_enable( &_device, &en, &en ); // write phase w/ readback if( status != ICM_20948_Stat_Ok ){ return status; } if( en.RAW_DATA_0_RDY_EN != enable ){ Serial.println("mismatch error"); status = ICM_20948_Stat_Err; return status; } return status; } ICM_20948_Status_e ICM_20948::intEnableOverflowFIFO ( uint8_t bm_enable ){ ICM_20948_INT_enable_t en; // storage status = ICM_20948_int_enable( &_device, NULL, &en ); // read phase if( status != ICM_20948_Stat_Ok ){ return status; } en.FIFO_OVERFLOW_EN_0 = ((bm_enable >> 0) & 0x01); // change the settings en.FIFO_OVERFLOW_EN_1 = ((bm_enable >> 1) & 0x01); en.FIFO_OVERFLOW_EN_2 = ((bm_enable >> 2) & 0x01); en.FIFO_OVERFLOW_EN_3 = ((bm_enable >> 3) & 0x01); en.FIFO_OVERFLOW_EN_4 = ((bm_enable >> 4) & 0x01); status = ICM_20948_int_enable( &_device, &en, &en ); // write phase w/ readback if( status != ICM_20948_Stat_Ok ){ return status; } return status; } ICM_20948_Status_e ICM_20948::intEnableWatermarkFIFO ( uint8_t bm_enable ){ ICM_20948_INT_enable_t en; // storage status = ICM_20948_int_enable( &_device, NULL, &en ); // read phase if( status != ICM_20948_Stat_Ok ){ return status; } en.FIFO_WM_EN_0 = ((bm_enable >> 0) & 0x01); // change the settings en.FIFO_WM_EN_1 = ((bm_enable >> 1) & 0x01); en.FIFO_WM_EN_2 = ((bm_enable >> 2) & 0x01); en.FIFO_WM_EN_3 = ((bm_enable >> 3) & 0x01); en.FIFO_WM_EN_4 = ((bm_enable >> 4) & 0x01); status = ICM_20948_int_enable( &_device, &en, &en ); // write phase w/ readback if( status != ICM_20948_Stat_Ok ){ return status; } return status; } // Interface Options ICM_20948_Status_e ICM_20948::i2cMasterPassthrough ( bool passthrough ){ status = ICM_20948_i2c_master_passthrough ( &_device, passthrough ); return status; } ICM_20948_Status_e ICM_20948::i2cMasterEnable ( bool enable ){ status = ICM_20948_i2c_master_enable( &_device, enable ); return status; } ICM_20948_Status_e ICM_20948::i2cMasterConfigureSlave ( uint8_t slave, uint8_t addr, uint8_t reg, uint8_t len, bool Rw, bool enable, bool data_only, bool grp, bool swap ){ status = ICM_20948_i2c_master_configure_slave ( &_device, slave, addr, reg, len, Rw, enable, data_only, grp, swap ); return status; } ICM_20948_Status_e ICM_20948::i2cMasterSLV4Transaction( uint8_t addr, uint8_t reg, uint8_t* data, uint8_t len, bool Rw, bool send_reg_addr ){ status = ICM_20948_i2c_master_slv4_txn( &_device, addr, reg, data, len, Rw, send_reg_addr ); return status; } ICM_20948_Status_e ICM_20948::i2cMasterSingleW ( uint8_t addr, uint8_t reg, uint8_t data ){ status = ICM_20948_i2c_master_single_w( &_device, addr, reg, &data ); return status; } uint8_t ICM_20948::i2cMasterSingleR ( uint8_t addr, uint8_t reg ){ uint8_t data; status = ICM_20948_i2c_master_single_r( &_device, addr, reg, &data ); return data; } ICM_20948_Status_e ICM_20948::startupDefault ( void ){ ICM_20948_Status_e retval = ICM_20948_Stat_Ok; retval = checkID(); if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; } retval = swReset(); if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; } delay(50); retval = sleep( false ); if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; } retval = lowPower( false ); if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; } retval = setSampleMode( (ICM_20948_Internal_Acc | ICM_20948_Internal_Gyr), ICM_20948_Sample_Mode_Continuous ); // options: ICM_20948_Sample_Mode_Continuous or ICM_20948_Sample_Mode_Cycled if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; } // sensors: ICM_20948_Internal_Acc, ICM_20948_Internal_Gyr, ICM_20948_Internal_Mst ICM_20948_fss_t FSS; FSS.a = gpm2; // (ICM_20948_ACCEL_CONFIG_FS_SEL_e) FSS.g = dps250; // (ICM_20948_GYRO_CONFIG_1_FS_SEL_e) retval = setFullScale( (ICM_20948_Internal_Acc | ICM_20948_Internal_Gyr), FSS ); if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; } ICM_20948_dlpcfg_t dlpcfg; dlpcfg.a = acc_d473bw_n499bw; dlpcfg.g = gyr_d361bw4_n376bw5; retval = setDLPFcfg( (ICM_20948_Internal_Acc | ICM_20948_Internal_Gyr), dlpcfg ); if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; } retval = enableDLPF( ICM_20948_Internal_Acc, false ); if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; } retval = enableDLPF( ICM_20948_Internal_Gyr, false ); if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; } _has_magnetometer = true; retval = startupMagnetometer(); if(( retval != ICM_20948_Stat_Ok) && ( retval != ICM_20948_Stat_NotImpl )){ status = retval; return status; } if( retval == ICM_20948_Stat_NotImpl ){ // This is a temporary fix. // Ultimately we *should* be able to configure the I2C master to handle the // magnetometer no matter what interface (SPI / I2C) we are using. // Should try testing I2C master functionality on a bare ICM chip w/o TXS0108 level shifter... _has_magnetometer = false; retval = ICM_20948_Stat_Ok; // reset the retval because we handled it in this cases } status = retval; return status; } ICM_20948_Status_e ICM_20948::startupMagnetometer ( void ){ return ICM_20948_Stat_NotImpl; // By default we assume that we cannot access the magnetometer } ICM_20948_Status_e ICM_20948::getMagnetometerData ( ICM_20948_AGMT_t* pagmt ){ return ICM_20948_Stat_NotImpl; // By default we assume that we cannot access the magnetometer } // direct read/write ICM_20948_Status_e ICM_20948::read ( uint8_t reg, uint8_t* pdata, uint32_t len){ status = ICM_20948_execute_r( &_device, reg, pdata, len ); return status; } ICM_20948_Status_e ICM_20948::write ( uint8_t reg, uint8_t* pdata, uint32_t len){ status = ICM_20948_execute_w( &_device, reg, pdata, len ); return status; } byte ICM_20948_I2C::begin(bool fusion){ // Associate _ad0 = ICM_20948_ARD_UNUSED_PIN; _ad0val = false; _addr = ICM_20948_I2C_ADDR_AD0; if( _ad0val ){ _addr = ICM_20948_I2C_ADDR_AD1; } // Set pinmodes if(_ad0 != ICM_20948_ARD_UNUSED_PIN){ pinMode(_ad0, OUTPUT); } // Set pins to default positions if(_ad0 != ICM_20948_ARD_UNUSED_PIN){ digitalWrite(_ad0, _ad0val); } if (!initI2C(100000)) return 0; // Set up the serif _serif.write = ICM_20948_write_I2C; _serif.read = ICM_20948_read_I2C; _serif.user = (void*)this; // refer to yourself in the user field // Link the serif _device._serif = &_serif; // Perform default startup status = startupDefault(); if( status != ICM_20948_Stat_Ok ){ return 0; } if (fusion && !quaterion) { quaterion = new CQuaterion; } return 2; } ICM_20948_Status_e ICM_20948_I2C::startupMagnetometer ( void ){ // If using the magnetometer through passthrough: i2cMasterPassthrough( true ); // Set passthrough mode to try to access the magnetometer (by default I2C master is disabled but you still have to enable the passthrough) // Try to set up magnetometer AK09916_CNTL2_Reg_t reg; reg.MODE = AK09916_mode_cont_100hz; ICM_20948_Status_e retval = writeMag( AK09916_REG_CNTL2, (uint8_t*)®, sizeof(AK09916_CNTL2_Reg_t) ); status = retval; if(status == ICM_20948_Stat_Ok){ _has_magnetometer = true; } return status; } ICM_20948_Status_e ICM_20948_I2C::magWhoIAm( void ){ ICM_20948_Status_e retval = ICM_20948_Stat_Ok; const uint8_t len = 2; uint8_t whoiam[len]; retval = readMag( AK09916_REG_WIA1, whoiam, len ); status = retval; if( retval != ICM_20948_Stat_Ok ){ return retval; } if( (whoiam[0] == (MAG_AK09916_WHO_AM_I >> 8)) && ( whoiam[1] == (MAG_AK09916_WHO_AM_I & 0xFF)) ){ retval = ICM_20948_Stat_Ok; status = retval; return status; } retval = ICM_20948_Stat_WrongID; status = retval; return status; } bool ICM_20948_I2C::magIsConnected( void ){ if( magWhoIAm() != ICM_20948_Stat_Ok ){ return false; } return true; } ICM_20948_Status_e ICM_20948_I2C::getMagnetometerData ( ICM_20948_AGMT_t* pagmt ){ const uint8_t reqd_len = 9; // you must read all the way through the status2 register to re-enable the next measurement uint8_t buff[reqd_len]; status = readMag( AK09916_REG_ST1, buff, reqd_len ); if( status != ICM_20948_Stat_Ok ){ return status; } pagmt->mag.axes.x = ((buff[2] << 8) | (buff[1] & 0xFF)); pagmt->mag.axes.y = ((buff[4] << 8) | (buff[3] & 0xFF)); pagmt->mag.axes.z = ((buff[6] << 8) | (buff[5] & 0xFF)); return status; } ICM_20948_Status_e ICM_20948_I2C::readMag( uint8_t reg, uint8_t* pdata, uint8_t len ){ // write sub-address i2c_cmd_handle_t cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, ( MAG_AK09916_I2C_ADDR << 1 ) | WRITE_BIT, ACK_CHECK_EN); i2c_master_write_byte(cmd, reg, ACK_CHECK_EN); i2c_master_stop(cmd); esp_err_t ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS); i2c_cmd_link_delete(cmd); if (ret != ESP_OK) return ICM_20948_Stat_Err; // read data cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, ( MAG_AK09916_I2C_ADDR << 1 ) | READ_BIT, ACK_CHECK_EN); if (len > 1) { i2c_master_read(cmd, pdata, len - 1, ACK_VAL); } i2c_master_read_byte(cmd, pdata + len - 1, NACK_VAL); i2c_master_stop(cmd); ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS); i2c_cmd_link_delete(cmd); return ret == ESP_OK ? ICM_20948_Stat_Ok : ICM_20948_Stat_NoData; } ICM_20948_Status_e ICM_20948_I2C::writeMag( uint8_t reg, uint8_t* pdata, uint8_t len ){ i2c_cmd_handle_t cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, ( MAG_AK09916_I2C_ADDR << 1 ) | WRITE_BIT, ACK_CHECK_EN); i2c_master_write_byte(cmd, reg, ACK_CHECK_EN); i2c_master_write(cmd, pdata, len, ACK_CHECK_DIS); i2c_master_stop(cmd); esp_err_t ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS); i2c_cmd_link_delete(cmd); return ret == ESP_OK ? ICM_20948_Stat_Ok : ICM_20948_Stat_Err; } bool ICM_20948_I2C::read(float* acc, float* gyr, float* mag, float* tmp, ORIENTATION* ori) { if(!dataReady() || ICM_20948_get_agmt( &_device, &agmt ) != ICM_20948_Stat_Ok){ return false; } if( _has_magnetometer ){ getMagnetometerData( &agmt ); } if (acc) { acc[0] = accX() / 1000; acc[1] = accY() / 1000; acc[2] = accZ() / 1000; } if (gyr) { gyr[0] = gyrX(); gyr[1] = gyrY(); gyr[2] = gyrZ(); } if (mag) { mag[0] = magX(); mag[1] = magY(); mag[2] = magZ(); } if (tmp) { *tmp = temp(); } if (quaterion && acc && gyr && mag) { quaterion->MadgwickQuaternionUpdate(acc[0], acc[1], acc[2], gyr[0]*PI/180.0f, gyr[1]*PI/180.0f, gyr[2]*PI/180.0f, mag[0], mag[1], mag[2]); quaterion->getOrientation(ori); } return true; }