This repository has been archived on 2024-10-27. You can view files and clone it, but cannot push or open issues or pull requests.
local-llm-server/llm_server/cluster/backend.py

138 lines
4.9 KiB
Python
Raw Normal View History

import numpy as np
2024-01-10 15:01:26 -07:00
from llm_server.cluster.cluster_config import get_a_cluster_backend, cluster_config
from llm_server.cluster.stores import redis_running_models
2024-05-07 12:20:53 -06:00
from llm_server.config.global_config import GlobalConfig
from llm_server.custom_redis import redis
from llm_server.llm.generator import generator
from llm_server.llm.info import get_info
from llm_server.llm.vllm.vllm_backend import VLLMBackend
from llm_server.routes.queue import priority_queue
from llm_server.routes.stats import calculate_wait_time, get_active_gen_workers_model
def get_backends_from_model(model_name: str):
2024-01-10 15:01:26 -07:00
"""
Get the backends that are running a specific model. This is the inverse of `get_model_choices()`.
:param model_name:
:return:
"""
assert isinstance(model_name, str)
return [x.decode('utf-8') for x in redis_running_models.smembers(model_name)]
def get_running_models():
2024-01-10 15:01:26 -07:00
"""
Get all the models that are in the cluster.
:return:
"""
return [x for x in list(redis_running_models.keys())]
2024-01-10 15:01:26 -07:00
def is_valid_model(model_name: str) -> bool:
"""
Is this a model that is being hosted in the cluster?
:param model_name:
:return:
"""
return redis_running_models.exists(model_name)
def test_backend(backend_url: str, test_prompt: bool = False):
2024-01-10 15:01:26 -07:00
"""
Test (using a test prompt) a backend to check if it is online.
:param backend_url:
:param test_prompt:
:return:
"""
backend_info = cluster_config.get_backend(backend_url)
if test_prompt:
handler = VLLMBackend(backend_url)
parameters, _ = handler.get_parameters({
"stream": False,
"temperature": 0,
"max_new_tokens": 3,
})
data = {
'prompt': 'test prompt',
**parameters
}
try:
success, response, err = generator(data, backend_url, timeout=10)
if not success or not response or err:
return False, {}
except:
return False, {}
i = get_info(backend_url, backend_info['mode'])
if not i.get('model'):
return False, {}
return True, i
2024-01-10 15:01:26 -07:00
def get_model_choices(regen: bool = False) -> tuple[dict, dict]:
"""
Get the infor and stats of the models hosted in the cluster.
:param regen:
:return:
"""
if not regen:
c = redis.getp('model_choices')
if c:
return c
base_client_api = redis.get('base_client_api', dtype=str)
running_models = get_running_models()
model_choices = {}
for model in running_models:
b = get_backends_from_model(model)
context_size = []
avg_gen_per_worker = []
concurrent_gens = 0
for backend_url in b:
backend_info = cluster_config.get_backend(backend_url)
if backend_info.get('model_config'):
context_size.append(backend_info['model_config']['max_position_embeddings'])
if backend_info.get('average_generation_elapsed_sec'):
avg_gen_per_worker.append(backend_info['average_generation_elapsed_sec'])
concurrent_gens += backend_info['concurrent_gens']
active_gen_workers = get_active_gen_workers_model(model)
proompters_in_queue = priority_queue.len(model)
if len(avg_gen_per_worker):
average_generation_elapsed_sec = np.average(avg_gen_per_worker)
else:
average_generation_elapsed_sec = 0
estimated_wait_sec = calculate_wait_time(average_generation_elapsed_sec, proompters_in_queue, concurrent_gens, active_gen_workers)
model_choices[model] = {
'model': model,
'client_api': f'https://{base_client_api}/{model}',
2024-05-07 12:20:53 -06:00
'ws_client_api': f'wss://{base_client_api}/{model}/v1/stream' if GlobalConfig.get().enable_streaming else None,
'openai_client_api': f'https://{base_client_api}/openai/{model}/v1' if GlobalConfig.get().enable_openi_compatible_backend else 'disabled',
'backend_count': len(b),
'estimated_wait': estimated_wait_sec,
'queued': proompters_in_queue,
'processing': active_gen_workers,
'avg_generation_time': average_generation_elapsed_sec,
2023-10-30 14:42:50 -06:00
'concurrent_gens': concurrent_gens,
'context_size': min(context_size) if len(context_size) else None
}
# Python wants to sort lowercase vs. uppercase letters differently.
model_choices = dict(sorted(model_choices.items(), key=lambda item: item[0].upper()))
default_backend_url = get_a_cluster_backend()
default_backend_info = cluster_config.get_backend(default_backend_url)
if not default_backend_info.get('model'):
# If everything is offline.
model_choices = {}
default_model = None
else:
default_model = default_backend_info['model']
redis.setp('model_choices', (model_choices, default_model))
return model_choices, default_model