104 lines
3.2 KiB
Python
104 lines
3.2 KiB
Python
|
import os
|
||
|
import sys
|
||
|
import time
|
||
|
import traceback
|
||
|
import warnings
|
||
|
from threading import Thread
|
||
|
|
||
|
import gradio as gr
|
||
|
import openai
|
||
|
import requests
|
||
|
|
||
|
warnings.filterwarnings("ignore")
|
||
|
|
||
|
API_BASE = os.getenv('API_BASE')
|
||
|
if not API_BASE:
|
||
|
print('Must set the secret variable API_BASE to your https://your-site/api')
|
||
|
sys.exit(1)
|
||
|
API_BASE = API_BASE.strip('/')
|
||
|
|
||
|
APP_TITLE = os.getenv('APP_TITLE')
|
||
|
PRIMARY_MODEL_CHOICE = os.getenv('PRIMARY_MODEL_CHOICE')
|
||
|
TRACKING_CODE = os.getenv('TRACKING_CODE')
|
||
|
|
||
|
|
||
|
def background():
|
||
|
while True:
|
||
|
previous = openai.api_base
|
||
|
try:
|
||
|
r = requests.get(API_BASE + '/stats').json()
|
||
|
if PRIMARY_MODEL_CHOICE in r['models']['choices'].keys():
|
||
|
openai.api_base = API_BASE + '/openai/' + PRIMARY_MODEL_CHOICE + '/v1'
|
||
|
else:
|
||
|
openai.api_base = API_BASE + '/openai/v1'
|
||
|
except:
|
||
|
traceback.print_exc()
|
||
|
openai.api_base = API_BASE + '/openai/v1'
|
||
|
if openai.api_base != previous:
|
||
|
print('Set primary model to', openai.api_base)
|
||
|
time.sleep(10)
|
||
|
|
||
|
|
||
|
if PRIMARY_MODEL_CHOICE:
|
||
|
t = Thread(target=background)
|
||
|
t.daemon = True
|
||
|
t.start()
|
||
|
print('Started the background thread.')
|
||
|
|
||
|
# A system prompt can be injected into the very first spot in the context.
|
||
|
# If the user sends a message that contains the CONTEXT_TRIGGER_PHRASE,
|
||
|
# the content in CONTEXT_TRIGGER_INJECTION will be injected.
|
||
|
# Setting CONTEXT_TRIGGER_PHRASE will also add it to the selectable examples.
|
||
|
CONTEXT_TRIGGER_PHRASE = os.getenv('CONTEXT_TRIGGER_PHRASE')
|
||
|
CONTEXT_TRIGGER_INJECTION = os.getenv('CONTEXT_TRIGGER_INJECTION')
|
||
|
|
||
|
openai.api_key = 'null'
|
||
|
openai.api_base = API_BASE + '/openai/v1'
|
||
|
|
||
|
|
||
|
def stream_response(prompt, history):
|
||
|
messages = []
|
||
|
do_injection = False
|
||
|
for human, assistant in history:
|
||
|
messages.append({'role': 'user', 'content': str(human)})
|
||
|
messages.append({'role': 'assistant', 'content': str(assistant)})
|
||
|
|
||
|
if CONTEXT_TRIGGER_INJECTION and CONTEXT_TRIGGER_PHRASE in human:
|
||
|
do_injection = True
|
||
|
messages.append({'role': 'user', 'content': prompt})
|
||
|
|
||
|
if do_injection or (CONTEXT_TRIGGER_INJECTION and CONTEXT_TRIGGER_PHRASE in prompt):
|
||
|
messages.insert(0, {'role': 'system', 'content': CONTEXT_TRIGGER_INJECTION})
|
||
|
|
||
|
try:
|
||
|
response = openai.ChatCompletion.create(
|
||
|
model='0',
|
||
|
messages=messages,
|
||
|
temperature=0,
|
||
|
max_tokens=300,
|
||
|
stream=True,
|
||
|
headers={'LLM-Source': 'huggingface-demo'}
|
||
|
)
|
||
|
except Exception:
|
||
|
raise gr.Error("Failed to reach inference endpoint.")
|
||
|
|
||
|
message = ''
|
||
|
for chunk in response:
|
||
|
if len(chunk['choices'][0]['delta']) != 0:
|
||
|
message += chunk['choices'][0]['delta']['content']
|
||
|
yield message
|
||
|
|
||
|
|
||
|
examples = ["hello"]
|
||
|
if CONTEXT_TRIGGER_PHRASE:
|
||
|
examples.insert(0, CONTEXT_TRIGGER_PHRASE)
|
||
|
|
||
|
with gr.Blocks(analytics_enabled=False) as demo:
|
||
|
gr.ChatInterface(stream_response, examples=examples, title=APP_TITLE, analytics_enabled=False, cache_examples=False, css='#component-0{height:100%!important}')
|
||
|
|
||
|
if TRACKING_CODE:
|
||
|
print('Inserting tracking code')
|
||
|
gr.HTML(TRACKING_CODE)
|
||
|
|
||
|
demo.queue(concurrency_count=1, api_open=False).launch(show_api=False)
|