This repository has been archived on 2024-10-27. You can view files and clone it, but cannot push or open issues or pull requests.
local-llm-server/other/vllm/vllm_api_server.py

115 lines
4.0 KiB
Python
Raw Normal View History

import argparse
import json
import time
from pathlib import Path
from typing import AsyncGenerator
import uvicorn
from fastapi import BackgroundTasks, FastAPI, Request
from fastapi.responses import JSONResponse, Response, StreamingResponse
from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.sampling_params import SamplingParams
from vllm.transformers_utils.tokenizer import get_tokenizer
from vllm.utils import random_uuid
TIMEOUT_KEEP_ALIVE = 5 # seconds.
TIMEOUT_TO_PREVENT_DEADLOCK = 1 # seconds.
app = FastAPI()
served_model = None
2023-09-24 13:27:27 -06:00
# TODO: figure out ROPE scaling
# TODO: make sure error messages are returned in the response
@app.get("/model")
async def generate(request: Request) -> Response:
return JSONResponse({'model': served_model, 'timestamp': int(time.time())})
@app.post("/tokenize")
async def generate(request: Request) -> Response:
request_dict = await request.json()
to_tokenize = request_dict.get("input")
if not to_tokenize:
JSONResponse({'error': 'must have input field'}, status_code=400)
tokens = tokenizer.tokenize(to_tokenize)
response = {}
if request_dict.get("return", False):
response['tokens'] = tokens
response['length'] = len(tokens)
return JSONResponse(response)
@app.post("/generate")
async def generate(request: Request) -> Response:
"""Generate completion for the request.
The request should be a JSON object with the following fields:
- prompt: the prompt to use for the generation.
- stream: whether to stream the results or not.
- other fields: the sampling parameters (See `SamplingParams` for details).
"""
request_dict = await request.json()
prompt = request_dict.pop("prompt")
stream = request_dict.pop("stream", False)
sampling_params = SamplingParams(**request_dict)
request_id = random_uuid()
results_generator = engine.generate(prompt, sampling_params, request_id)
# Streaming case
async def stream_results() -> AsyncGenerator[bytes, None]:
async for request_output in results_generator:
prompt = request_output.prompt
text_outputs = [
prompt + output.text for output in request_output.outputs
]
ret = {"text": text_outputs}
yield (json.dumps(ret) + "\0").encode("utf-8")
async def abort_request() -> None:
await engine.abort(request_id)
if stream:
background_tasks = BackgroundTasks()
# Abort the request if the client disconnects.
background_tasks.add_task(abort_request)
return StreamingResponse(stream_results(), background=background_tasks)
# Non-streaming case
final_output = None
async for request_output in results_generator:
if await request.is_disconnected():
# Abort the request if the client disconnects.
await engine.abort(request_id)
return Response(status_code=499)
final_output = request_output
assert final_output is not None
prompt = final_output.prompt
text_outputs = [prompt + output.text for output in final_output.outputs]
ret = {"text": text_outputs}
return JSONResponse(ret)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=8000)
parser = AsyncEngineArgs.add_cli_args(parser)
args = parser.parse_args()
engine_args = AsyncEngineArgs.from_cli_args(args)
engine = AsyncLLMEngine.from_engine_args(engine_args)
served_model = Path(args.model).name
tokenizer = get_tokenizer(engine_args.tokenizer,
tokenizer_mode=args.tokenizer_mode,
trust_remote_code=args.trust_remote_code)
uvicorn.run(app,
host=args.host,
port=args.port,
log_level="debug",
timeout_keep_alive=TIMEOUT_KEEP_ALIVE)