redo config
This commit is contained in:
parent
ff82add09e
commit
ee9a0d4858
13
daemon.py
13
daemon.py
|
@ -8,9 +8,12 @@ from pathlib import Path
|
|||
from redis import Redis
|
||||
|
||||
from llm_server.cluster.cluster_config import cluster_config
|
||||
from llm_server.config.load import load_config, parse_backends
|
||||
from llm_server.config.global_config import GlobalConfig
|
||||
from llm_server.config.load import load_config
|
||||
from llm_server.custom_redis import redis
|
||||
from llm_server.database.conn import Database
|
||||
from llm_server.database.create import create_db
|
||||
from llm_server.database.database import get_number_of_rows
|
||||
from llm_server.logging import create_logger, logging_info, init_logging
|
||||
from llm_server.routes.v1.generate_stats import generate_stats
|
||||
from llm_server.workers.threader import start_background
|
||||
|
@ -39,19 +42,23 @@ if __name__ == "__main__":
|
|||
Redis().flushall()
|
||||
logger.info('Flushed Redis.')
|
||||
|
||||
success, config, msg = load_config(config_path)
|
||||
success, msg = load_config(config_path)
|
||||
if not success:
|
||||
logger.info(f'Failed to load config: {msg}')
|
||||
sys.exit(1)
|
||||
|
||||
Database.initialise(maxconn=GlobalConfig.get().mysql.maxconn, host=GlobalConfig.get().mysql.host, user=GlobalConfig.get().mysql.username, password=GlobalConfig.get().mysql.password, database=GlobalConfig.get().mysql.database)
|
||||
create_db()
|
||||
|
||||
cluster_config.clear()
|
||||
cluster_config.load(parse_backends(config))
|
||||
cluster_config.load()
|
||||
|
||||
logger.info('Loading backend stats...')
|
||||
generate_stats(regen=True)
|
||||
|
||||
if GlobalConfig.get().load_num_prompts:
|
||||
redis.set('proompts', get_number_of_rows('prompts'))
|
||||
|
||||
start_background()
|
||||
|
||||
# Give some time for the background threads to get themselves ready to go.
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
import numpy as np
|
||||
|
||||
from llm_server import opts
|
||||
from llm_server.cluster.cluster_config import get_a_cluster_backend, cluster_config
|
||||
from llm_server.cluster.stores import redis_running_models
|
||||
from llm_server.config.global_config import GlobalConfig
|
||||
from llm_server.custom_redis import redis
|
||||
from llm_server.llm.generator import generator
|
||||
from llm_server.llm.info import get_info
|
||||
|
@ -108,8 +108,8 @@ def get_model_choices(regen: bool = False) -> tuple[dict, dict]:
|
|||
model_choices[model] = {
|
||||
'model': model,
|
||||
'client_api': f'https://{base_client_api}/{model}',
|
||||
'ws_client_api': f'wss://{base_client_api}/{model}/v1/stream' if opts.enable_streaming else None,
|
||||
'openai_client_api': f'https://{base_client_api}/openai/{model}/v1' if opts.enable_openi_compatible_backend else 'disabled',
|
||||
'ws_client_api': f'wss://{base_client_api}/{model}/v1/stream' if GlobalConfig.get().enable_streaming else None,
|
||||
'openai_client_api': f'https://{base_client_api}/openai/{model}/v1' if GlobalConfig.get().enable_openi_compatible_backend else 'disabled',
|
||||
'backend_count': len(b),
|
||||
'estimated_wait': estimated_wait_sec,
|
||||
'queued': proompters_in_queue,
|
||||
|
|
|
@ -2,9 +2,9 @@ import hashlib
|
|||
import pickle
|
||||
import traceback
|
||||
|
||||
from llm_server import opts
|
||||
from llm_server.cluster.redis_cycle import add_backend_cycler, redis_cycle
|
||||
from llm_server.cluster.stores import redis_running_models
|
||||
from llm_server.config.global_config import GlobalConfig
|
||||
from llm_server.custom_redis import RedisCustom
|
||||
from llm_server.logging import create_logger
|
||||
from llm_server.routes.helpers.model import estimate_model_size
|
||||
|
@ -26,8 +26,13 @@ class RedisClusterStore:
|
|||
def clear(self):
|
||||
self.config_redis.flush()
|
||||
|
||||
def load(self, config: dict):
|
||||
for k, v in config.items():
|
||||
def load(self):
|
||||
stuff = {}
|
||||
for item in GlobalConfig.get().cluster:
|
||||
backend_url = item.backend_url.strip('/')
|
||||
item.backend_url = backend_url
|
||||
stuff[backend_url] = item
|
||||
for k, v in stuff.items():
|
||||
self.add_backend(k, v)
|
||||
|
||||
def add_backend(self, name: str, values: dict):
|
||||
|
@ -92,7 +97,7 @@ def get_backends():
|
|||
result[k] = {'status': status, 'priority': priority}
|
||||
|
||||
try:
|
||||
if not opts.prioritize_by_size:
|
||||
if not GlobalConfig.get().prioritize_by_size:
|
||||
online_backends = sorted(
|
||||
((url, info) for url, info in backends.items() if info['online']),
|
||||
key=lambda kv: -kv[1]['priority'],
|
||||
|
|
|
@ -1,81 +1,14 @@
|
|||
import yaml
|
||||
from llm_server.config.global_config import GlobalConfig
|
||||
|
||||
|
||||
def cluster_worker_count():
|
||||
count = 0
|
||||
for item in GlobalConfig.get().cluster:
|
||||
count += item['concurrent_gens']
|
||||
return count
|
||||
|
||||
config_default_vars = {
|
||||
'log_prompts': False,
|
||||
'auth_required': False,
|
||||
'frontend_api_client': '',
|
||||
'verify_ssl': True,
|
||||
'load_num_prompts': False,
|
||||
'show_num_prompts': True,
|
||||
'show_uptime': True,
|
||||
'analytics_tracking_code': '',
|
||||
'average_generation_time_mode': 'database',
|
||||
'info_html': None,
|
||||
'show_total_output_tokens': True,
|
||||
'simultaneous_requests_per_ip': 3,
|
||||
'max_new_tokens': 500,
|
||||
'manual_model_name': False,
|
||||
'enable_streaming': True,
|
||||
'enable_openi_compatible_backend': True,
|
||||
'openai_api_key': None,
|
||||
'expose_openai_system_prompt': True,
|
||||
'openai_system_prompt': """You are an assistant chatbot. Your main function is to provide accurate and helpful responses to the user's queries. You should always be polite, respectful, and patient. You should not provide any personal opinions or advice unless specifically asked by the user. You should not make any assumptions about the user's knowledge or abilities. You should always strive to provide clear and concise answers. If you do not understand a user's query, ask for clarification. If you cannot provide an answer, apologize and suggest the user seek help elsewhere.\nLines that start with "### ASSISTANT" were messages you sent previously.\nLines that start with "### USER" were messages sent by the user you are chatting with.\nYou will respond to the "### RESPONSE:" prompt as the assistant and follow the instructions given by the user.\n\n""",
|
||||
'http_host': None,
|
||||
'admin_token': None,
|
||||
'openai_expose_our_model': False,
|
||||
'openai_force_no_hashes': True,
|
||||
'include_system_tokens_in_stats': True,
|
||||
'openai_moderation_scan_last_n': 5,
|
||||
'openai_org_name': 'OpenAI',
|
||||
'openai_silent_trim': False,
|
||||
'openai_moderation_enabled': True,
|
||||
'netdata_root': None,
|
||||
'show_backends': True,
|
||||
'background_homepage_cacher': True,
|
||||
'openai_moderation_timeout': 5,
|
||||
'prioritize_by_size': False
|
||||
}
|
||||
config_required_vars = ['cluster', 'frontend_api_mode', 'llm_middleware_name']
|
||||
|
||||
mode_ui_names = {
|
||||
'ooba': ('Text Gen WebUI (ooba)', 'Blocking API url', 'Streaming API url'),
|
||||
'vllm': ('Text Gen WebUI (ooba)', 'Blocking API url', 'Streaming API url'),
|
||||
}
|
||||
|
||||
|
||||
class ConfigLoader:
|
||||
"""
|
||||
default_vars = {"var1": "default1", "var2": "default2"}
|
||||
required_vars = ["var1", "var3"]
|
||||
config_loader = ConfigLoader("config.yaml", default_vars, required_vars)
|
||||
config = config_loader.load_config()
|
||||
"""
|
||||
|
||||
def __init__(self, config_file, default_vars=None, required_vars=None):
|
||||
self.config_file = config_file
|
||||
self.default_vars = default_vars if default_vars else {}
|
||||
self.required_vars = required_vars if required_vars else []
|
||||
self.config = {}
|
||||
|
||||
def load_config(self) -> (bool, str | None, str | None):
|
||||
with open(self.config_file, 'r') as stream:
|
||||
try:
|
||||
self.config = yaml.safe_load(stream)
|
||||
except yaml.YAMLError as exc:
|
||||
return False, None, exc
|
||||
|
||||
if self.config is None:
|
||||
# Handle empty file
|
||||
self.config = {}
|
||||
|
||||
# Set default variables if they are not present in the config file
|
||||
for var, default_value in self.default_vars.items():
|
||||
if var not in self.config:
|
||||
self.config[var] = default_value
|
||||
|
||||
# Check if required variables are present in the config file
|
||||
for var in self.required_vars:
|
||||
if var not in self.config:
|
||||
return False, None, f'Required variable "{var}" is missing from the config file'
|
||||
|
||||
return True, self.config, None
|
||||
|
|
|
@ -0,0 +1,15 @@
|
|||
from llm_server.config.model import ConfigModel
|
||||
|
||||
|
||||
class GlobalConfig:
|
||||
__config_model: ConfigModel = None
|
||||
|
||||
@classmethod
|
||||
def initalize(cls, config: ConfigModel):
|
||||
if cls.__config_model is not None:
|
||||
raise Exception('Config is already initialised')
|
||||
cls.__config_model = config
|
||||
|
||||
@classmethod
|
||||
def get(cls):
|
||||
return cls.__config_model
|
|
@ -1,94 +1,86 @@
|
|||
import re
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import openai
|
||||
from bison import bison, Option, ListOption, Scheme
|
||||
|
||||
import llm_server
|
||||
from llm_server import opts
|
||||
from llm_server.config.config import ConfigLoader, config_default_vars, config_required_vars
|
||||
from llm_server.config.global_config import GlobalConfig
|
||||
from llm_server.config.model import ConfigModel
|
||||
from llm_server.config.scheme import config_scheme
|
||||
from llm_server.custom_redis import redis
|
||||
from llm_server.database.conn import Database
|
||||
from llm_server.database.database import get_number_of_rows
|
||||
from llm_server.logging import create_logger
|
||||
from llm_server.routes.queue import PriorityQueue
|
||||
|
||||
_logger = create_logger('config')
|
||||
|
||||
|
||||
def load_config(config_path):
|
||||
config_loader = ConfigLoader(config_path, config_default_vars, config_required_vars)
|
||||
success, config, msg = config_loader.load_config()
|
||||
if not success:
|
||||
return success, config, msg
|
||||
def validate_config(config: bison.Bison):
|
||||
def do(v, scheme: Scheme = None):
|
||||
if isinstance(v, Option) and v.choices is None:
|
||||
if not isinstance(config.config[v.name], v.type):
|
||||
raise ValueError(f'"{v.name}" must be type {v.type}. Current value: "{config.config[v.name]}"')
|
||||
elif isinstance(v, Option) and v.choices is not None:
|
||||
if config.config[v.name] not in v.choices:
|
||||
raise ValueError(f'"{v.name}" must be one of {v.choices}. Current value: "{config.config[v.name]}"')
|
||||
elif isinstance(v, ListOption):
|
||||
if isinstance(config.config[v.name], list):
|
||||
for item in config.config[v.name]:
|
||||
do(item, v.member_scheme)
|
||||
elif isinstance(config.config[v.name], dict):
|
||||
for kk, vv in config.config[v.name].items():
|
||||
scheme_dict = v.member_scheme.flatten()
|
||||
if not isinstance(vv, scheme_dict[kk].type):
|
||||
raise ValueError(f'"{kk}" must be type {scheme_dict[kk].type}. Current value: "{vv}"')
|
||||
elif isinstance(scheme_dict[kk], Option) and scheme_dict[kk].choices is not None:
|
||||
if vv not in scheme_dict[kk].choices:
|
||||
raise ValueError(f'"{kk}" must be one of {scheme_dict[kk].choices}. Current value: "{vv}"')
|
||||
elif isinstance(v, dict) and scheme is not None:
|
||||
scheme_dict = scheme.flatten()
|
||||
for kk, vv in v.items():
|
||||
if not isinstance(vv, scheme_dict[kk].type):
|
||||
raise ValueError(f'"{kk}" must be type {scheme_dict[kk].type}. Current value: "{vv}"')
|
||||
elif isinstance(scheme_dict[kk], Option) and scheme_dict[kk].choices is not None:
|
||||
if vv not in scheme_dict[kk].choices:
|
||||
raise ValueError(f'"{kk}" must be one of {scheme_dict[kk].choices}. Current value: "{vv}"')
|
||||
|
||||
# TODO: this is atrocious
|
||||
opts.auth_required = config['auth_required']
|
||||
opts.log_prompts = config['log_prompts']
|
||||
opts.frontend_api_client = config['frontend_api_client']
|
||||
opts.show_num_prompts = config['show_num_prompts']
|
||||
opts.show_uptime = config['show_uptime']
|
||||
opts.cluster = config['cluster']
|
||||
opts.show_total_output_tokens = config['show_total_output_tokens']
|
||||
opts.netdata_root = config['netdata_root']
|
||||
opts.simultaneous_requests_per_ip = config['simultaneous_requests_per_ip']
|
||||
opts.max_new_tokens = config['max_new_tokens']
|
||||
opts.manual_model_name = config['manual_model_name']
|
||||
opts.llm_middleware_name = config['llm_middleware_name']
|
||||
opts.enable_openi_compatible_backend = config['enable_openi_compatible_backend']
|
||||
opts.openai_system_prompt = config['openai_system_prompt']
|
||||
opts.expose_openai_system_prompt = config['expose_openai_system_prompt']
|
||||
opts.enable_streaming = config['enable_streaming']
|
||||
opts.openai_api_key = config['openai_api_key']
|
||||
openai.api_key = opts.openai_api_key
|
||||
opts.admin_token = config['admin_token']
|
||||
opts.openai_expose_our_model = config['openai_expose_our_model']
|
||||
opts.openai_force_no_hashes = config['openai_force_no_hashes']
|
||||
opts.include_system_tokens_in_stats = config['include_system_tokens_in_stats']
|
||||
opts.openai_moderation_scan_last_n = config['openai_moderation_scan_last_n']
|
||||
opts.openai_org_name = config['openai_org_name']
|
||||
opts.openai_silent_trim = config['openai_silent_trim']
|
||||
opts.openai_moderation_enabled = config['openai_moderation_enabled']
|
||||
opts.show_backends = config['show_backends']
|
||||
opts.background_homepage_cacher = config['background_homepage_cacher']
|
||||
opts.openai_moderation_timeout = config['openai_moderation_timeout']
|
||||
opts.frontend_api_mode = config['frontend_api_mode']
|
||||
opts.prioritize_by_size = config['prioritize_by_size']
|
||||
for k, v in config_scheme.flatten().items():
|
||||
do(v)
|
||||
|
||||
# Scale the number of workers.
|
||||
for item in config['cluster']:
|
||||
opts.cluster_workers += item['concurrent_gens']
|
||||
|
||||
llm_server.routes.queue.priority_queue = PriorityQueue([x['backend_url'] for x in config['cluster']])
|
||||
def load_config(config_path: Path):
|
||||
config = bison.Bison(scheme=config_scheme)
|
||||
config.config_name = 'config'
|
||||
config.add_config_paths(str(config_path.parent))
|
||||
config.parse()
|
||||
|
||||
if opts.openai_expose_our_model and not opts.openai_api_key:
|
||||
try:
|
||||
validate_config(config)
|
||||
except ValueError as e:
|
||||
return False, str(e)
|
||||
|
||||
config_model = ConfigModel(**config.config)
|
||||
GlobalConfig.initalize(config_model)
|
||||
|
||||
if not (0 < GlobalConfig.get().mysql.maxconn <= 32):
|
||||
return False, f'"maxcon" should be higher than 0 and lower or equal to 32. Current value: "{GlobalConfig.get().mysql.maxconn}"'
|
||||
|
||||
openai.api_key = GlobalConfig.get().openai_api_key
|
||||
|
||||
llm_server.routes.queue.priority_queue = PriorityQueue(set([x.backend_url for x in config_model.cluster]))
|
||||
|
||||
if GlobalConfig.get().openai_expose_our_model and not GlobalConfig.get().openai_api_key:
|
||||
_logger.error('If you set openai_expose_our_model to false, you must set your OpenAI key in openai_api_key.')
|
||||
sys.exit(1)
|
||||
|
||||
opts.verify_ssl = config['verify_ssl']
|
||||
if not opts.verify_ssl:
|
||||
if not GlobalConfig.get().verify_ssl:
|
||||
import urllib3
|
||||
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
|
||||
|
||||
if config['http_host']:
|
||||
if GlobalConfig.get().http_host:
|
||||
http_host = re.sub(r'https?://', '', config["http_host"])
|
||||
redis.set('http_host', http_host)
|
||||
redis.set('base_client_api', f'{http_host}/{opts.frontend_api_client.strip("/")}')
|
||||
redis.set('base_client_api', f'{http_host}/{GlobalConfig.get().frontend_api_client.strip("/")}')
|
||||
|
||||
Database.initialise(maxconn=config['mysql']['maxconn'], host=config['mysql']['host'], user=config['mysql']['username'], password=config['mysql']['password'], database=config['mysql']['database'])
|
||||
|
||||
if config['load_num_prompts']:
|
||||
redis.set('proompts', get_number_of_rows('prompts'))
|
||||
|
||||
return success, config, msg
|
||||
|
||||
|
||||
def parse_backends(config):
|
||||
if not config.get('cluster'):
|
||||
return False
|
||||
cluster = config.get('cluster')
|
||||
config = {}
|
||||
for item in cluster:
|
||||
backend_url = item['backend_url'].strip('/')
|
||||
item['backend_url'] = backend_url
|
||||
config[backend_url] = item
|
||||
return config
|
||||
return True, None
|
||||
|
|
|
@ -0,0 +1,74 @@
|
|||
from enum import Enum
|
||||
from typing import Union, List
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class ConfigClusterMode(str, Enum):
|
||||
vllm = 'vllm'
|
||||
|
||||
|
||||
class ConfigCluser(BaseModel):
|
||||
backend_url: str
|
||||
concurrent_gens: int
|
||||
mode: ConfigClusterMode
|
||||
priority: int
|
||||
|
||||
|
||||
class ConfigFrontendApiModes(str, Enum):
|
||||
ooba = 'ooba'
|
||||
|
||||
|
||||
class ConfigMysql(BaseModel):
|
||||
host: str
|
||||
username: str
|
||||
password: str
|
||||
database: str
|
||||
maxconn: int
|
||||
|
||||
|
||||
class ConfigAvgGenTimeModes(str, Enum):
|
||||
database = 'database'
|
||||
minute = 'minute'
|
||||
|
||||
|
||||
class ConfigModel(BaseModel):
|
||||
frontend_api_mode: ConfigFrontendApiModes
|
||||
cluster: List[ConfigCluser]
|
||||
prioritize_by_size: bool
|
||||
admin_token: Union[str, None]
|
||||
mysql: ConfigMysql
|
||||
http_host: str
|
||||
webserver_log_directory: str
|
||||
include_system_tokens_in_stats: bool
|
||||
background_homepage_cacher: bool
|
||||
max_new_tokens: int
|
||||
enable_streaming: int
|
||||
show_backends: bool
|
||||
log_prompts: bool
|
||||
verify_ssl: bool
|
||||
auth_required: bool
|
||||
simultaneous_requests_per_ip: int
|
||||
max_queued_prompts_per_ip: int
|
||||
llm_middleware_name: str
|
||||
analytics_tracking_code: Union[str, None]
|
||||
info_html: Union[str, None]
|
||||
enable_openi_compatible_backend: bool
|
||||
openai_api_key: Union[str, None]
|
||||
expose_openai_system_prompt: bool
|
||||
openai_expose_our_model: bool
|
||||
openai_force_no_hashes: bool
|
||||
openai_moderation_enabled: bool
|
||||
openai_moderation_timeout: int
|
||||
openai_moderation_scan_last_n: int
|
||||
openai_org_name: str
|
||||
openai_silent_trim: bool
|
||||
frontend_api_client: str
|
||||
average_generation_time_mode: ConfigAvgGenTimeModes
|
||||
show_num_prompts: bool
|
||||
show_uptime: bool
|
||||
show_total_output_tokens: bool
|
||||
show_backend_info: bool
|
||||
load_num_prompts: bool
|
||||
manual_model_name: Union[str, None]
|
||||
backend_request_timeout: int
|
|
@ -0,0 +1,59 @@
|
|||
from typing import Union
|
||||
|
||||
import bison
|
||||
|
||||
from llm_server.opts import default_openai_system_prompt
|
||||
|
||||
config_scheme = bison.Scheme(
|
||||
bison.Option('frontend_api_mode', choices=['ooba'], field_type=str),
|
||||
bison.ListOption('cluster', member_scheme=bison.Scheme(
|
||||
bison.Option('backend_url', field_type=str),
|
||||
bison.Option('concurrent_gens', field_type=int),
|
||||
bison.Option('mode', choices=['vllm'], field_type=str),
|
||||
bison.Option('priority', field_type=int),
|
||||
)),
|
||||
bison.Option('prioritize_by_size', default=True, field_type=bool),
|
||||
bison.Option('admin_token', default=None, field_type=Union[str, None]),
|
||||
bison.ListOption('mysql', member_scheme=bison.Scheme(
|
||||
bison.Option('host', field_type=str),
|
||||
bison.Option('username', field_type=str),
|
||||
bison.Option('password', field_type=str),
|
||||
bison.Option('database', field_type=str),
|
||||
bison.Option('maxconn', field_type=int)
|
||||
)),
|
||||
bison.Option('http_host', default='', field_type=str),
|
||||
bison.Option('webserver_log_directory', default='/var/log/localllm', field_type=str),
|
||||
bison.Option('include_system_tokens_in_stats', default=True, field_type=bool),
|
||||
bison.Option('background_homepage_cacher', default=True, field_type=bool),
|
||||
bison.Option('max_new_tokens', default=500, field_type=int),
|
||||
bison.Option('enable_streaming', default=True, field_type=bool),
|
||||
bison.Option('show_backends', default=True, field_type=bool),
|
||||
bison.Option('log_prompts', default=True, field_type=bool),
|
||||
bison.Option('verify_ssl', default=False, field_type=bool),
|
||||
bison.Option('auth_required', default=False, field_type=bool),
|
||||
bison.Option('simultaneous_requests_per_ip', default=1, field_type=int),
|
||||
bison.Option('max_queued_prompts_per_ip', default=1, field_type=int),
|
||||
bison.Option('llm_middleware_name', default='LocalLLM', field_type=str),
|
||||
bison.Option('analytics_tracking_code', default=None, field_type=Union[str, None]),
|
||||
bison.Option('info_html', default=None, field_type=Union[str, None]),
|
||||
bison.Option('enable_openi_compatible_backend', default=True, field_type=bool),
|
||||
bison.Option('openai_api_key', default=None, field_type=Union[str, None]),
|
||||
bison.Option('expose_openai_system_prompt', default=True, field_type=bool),
|
||||
bison.Option('openai_expose_our_model', default='', field_type=bool),
|
||||
bison.Option('openai_force_no_hashes', default=True, field_type=bool),
|
||||
bison.Option('openai_system_prompt', default=default_openai_system_prompt, field_type=str),
|
||||
bison.Option('openai_moderation_enabled', default=False, field_type=bool),
|
||||
bison.Option('openai_moderation_timeout', default=5, field_type=int),
|
||||
bison.Option('openai_moderation_scan_last_n', default=5, field_type=int),
|
||||
bison.Option('openai_org_name', default='OpenAI', field_type=str),
|
||||
bison.Option('openai_silent_trim', default=True, field_type=bool),
|
||||
bison.Option('frontend_api_client', default='/api', field_type=str),
|
||||
bison.Option('average_generation_time_mode', default='database', choices=['database', 'minute'], field_type=str),
|
||||
bison.Option('show_num_prompts', default=True, field_type=bool),
|
||||
bison.Option('show_uptime', default=True, field_type=bool),
|
||||
bison.Option('show_total_output_tokens', default=True, field_type=bool),
|
||||
bison.Option('show_backend_info', default=True, field_type=bool),
|
||||
bison.Option('load_num_prompts', default=True, field_type=bool),
|
||||
bison.Option('manual_model_name', default=None, field_type=Union[str, None]),
|
||||
bison.Option('backend_request_timeout', default=30, field_type=int)
|
||||
)
|
|
@ -5,7 +5,7 @@ class Database:
|
|||
__connection_pool = None
|
||||
|
||||
@classmethod
|
||||
def initialise(cls, maxconn, **kwargs):
|
||||
def initialise(cls, maxconn: int, **kwargs):
|
||||
if cls.__connection_pool is not None:
|
||||
raise Exception('Database connection pool is already initialised')
|
||||
cls.__connection_pool = pooling.MySQLConnectionPool(pool_size=maxconn,
|
||||
|
|
|
@ -3,8 +3,8 @@ import time
|
|||
import traceback
|
||||
from typing import Union
|
||||
|
||||
from llm_server import opts
|
||||
from llm_server.cluster.cluster_config import cluster_config
|
||||
from llm_server.config.global_config import GlobalConfig
|
||||
from llm_server.database.conn import CursorFromConnectionFromPool
|
||||
from llm_server.llm import get_token_count
|
||||
|
||||
|
@ -38,10 +38,10 @@ def do_db_log(ip: str, token: str, prompt: str, response: Union[str, None], gen_
|
|||
if is_error:
|
||||
gen_time = None
|
||||
|
||||
if not opts.log_prompts:
|
||||
if not GlobalConfig.get().log_prompts:
|
||||
prompt = None
|
||||
|
||||
if not opts.log_prompts and not is_error:
|
||||
if not GlobalConfig.get().log_prompts and not is_error:
|
||||
# TODO: test and verify this works as expected
|
||||
response = None
|
||||
|
||||
|
@ -75,13 +75,13 @@ def is_valid_api_key(api_key):
|
|||
|
||||
def is_api_key_moderated(api_key):
|
||||
if not api_key:
|
||||
return opts.openai_moderation_enabled
|
||||
return GlobalConfig.get().openai_moderation_enabled
|
||||
with CursorFromConnectionFromPool() as cursor:
|
||||
cursor.execute("SELECT openai_moderation_enabled FROM token_auth WHERE token = %s", (api_key,))
|
||||
row = cursor.fetchone()
|
||||
if row is not None:
|
||||
return bool(row[0])
|
||||
return opts.openai_moderation_enabled
|
||||
return GlobalConfig.get().openai_moderation_enabled
|
||||
|
||||
|
||||
def get_number_of_rows(table_name):
|
||||
|
@ -160,7 +160,7 @@ def increment_token_uses(token):
|
|||
|
||||
def get_token_ratelimit(token):
|
||||
priority = 9990
|
||||
simultaneous_ip = opts.simultaneous_requests_per_ip
|
||||
simultaneous_ip = GlobalConfig.get().simultaneous_requests_per_ip
|
||||
if token:
|
||||
with CursorFromConnectionFromPool() as cursor:
|
||||
cursor.execute("SELECT priority, simultaneous_ip FROM token_auth WHERE token = %s", (token,))
|
||||
|
|
|
@ -7,7 +7,7 @@ from typing import Union
|
|||
import simplejson as json
|
||||
from flask import make_response
|
||||
|
||||
from llm_server import opts
|
||||
from llm_server.config.global_config import GlobalConfig
|
||||
from llm_server.custom_redis import redis
|
||||
|
||||
|
||||
|
@ -68,4 +68,4 @@ def auto_set_base_client_api(request):
|
|||
return
|
||||
else:
|
||||
redis.set('http_host', host)
|
||||
redis.set('base_client_api', f'{host}/{opts.frontend_api_client.strip("/")}')
|
||||
redis.set('base_client_api', f'{host}/{GlobalConfig.get().frontend_api_client.strip("/")}')
|
||||
|
|
|
@ -1,19 +1,19 @@
|
|||
import requests
|
||||
|
||||
from llm_server import opts
|
||||
from llm_server.config.global_config import GlobalConfig
|
||||
|
||||
|
||||
def get_running_model(backend_url: str, mode: str):
|
||||
if mode == 'ooba':
|
||||
try:
|
||||
backend_response = requests.get(f'{backend_url}/api/v1/model', timeout=opts.backend_request_timeout, verify=opts.verify_ssl)
|
||||
backend_response = requests.get(f'{backend_url}/api/v1/model', timeout=GlobalConfig.get().backend_request_timeout, verify=GlobalConfig.get().verify_ssl)
|
||||
r_json = backend_response.json()
|
||||
return r_json['result'], None
|
||||
except Exception as e:
|
||||
return False, e
|
||||
elif mode == 'vllm':
|
||||
try:
|
||||
backend_response = requests.get(f'{backend_url}/model', timeout=opts.backend_request_timeout, verify=opts.verify_ssl)
|
||||
backend_response = requests.get(f'{backend_url}/model', timeout=GlobalConfig.get().backend_request_timeout, verify=GlobalConfig.get().verify_ssl)
|
||||
r_json = backend_response.json()
|
||||
return r_json['model'], None
|
||||
except Exception as e:
|
||||
|
@ -28,7 +28,7 @@ def get_info(backend_url: str, mode: str):
|
|||
# raise NotImplementedError
|
||||
elif mode == 'vllm':
|
||||
try:
|
||||
r = requests.get(f'{backend_url}/info', verify=opts.verify_ssl, timeout=opts.backend_request_timeout)
|
||||
r = requests.get(f'{backend_url}/info', verify=GlobalConfig.get().verify_ssl, timeout=GlobalConfig.get().backend_request_timeout)
|
||||
j = r.json()
|
||||
except Exception as e:
|
||||
return {}
|
||||
|
|
|
@ -5,12 +5,12 @@ import traceback
|
|||
|
||||
import requests
|
||||
|
||||
from llm_server import opts
|
||||
from llm_server.config.global_config import GlobalConfig
|
||||
|
||||
|
||||
def generate(json_data: dict):
|
||||
try:
|
||||
r = requests.post(f'{opts.backend_url}/api/v1/generate', json=json_data, verify=opts.verify_ssl, timeout=opts.backend_generate_request_timeout)
|
||||
r = requests.post(f'{GlobalConfig.get().backend_url}/api/v1/generate', json=json_data, verify=GlobalConfig.get().verify_ssl, timeout=GlobalConfig.get().backend_generate_request_timeout)
|
||||
except requests.exceptions.ReadTimeout:
|
||||
return False, None, 'Request to backend timed out'
|
||||
except Exception as e:
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
import requests
|
||||
|
||||
from llm_server import opts
|
||||
from llm_server.config.global_config import GlobalConfig
|
||||
from llm_server.logging import create_logger
|
||||
|
||||
_logger = create_logger('moderation')
|
||||
|
@ -9,7 +9,7 @@ _logger = create_logger('moderation')
|
|||
def check_moderation_endpoint(prompt: str):
|
||||
headers = {
|
||||
'Content-Type': 'application/json',
|
||||
'Authorization': f"Bearer {opts.openai_api_key}",
|
||||
'Authorization': f"Bearer {GlobalConfig.get().openai_api_key}",
|
||||
}
|
||||
response = requests.post('https://api.openai.com/v1/moderations', headers=headers, json={"input": prompt}, timeout=10)
|
||||
if response.status_code != 200:
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
from flask import jsonify
|
||||
|
||||
from llm_server import opts
|
||||
from llm_server.config.global_config import GlobalConfig
|
||||
from llm_server.logging import create_logger
|
||||
|
||||
_logger = create_logger('oai_to_vllm')
|
||||
|
@ -14,7 +14,7 @@ def oai_to_vllm(request_json_body, stop_hashes: bool, mode):
|
|||
request_json_body['stop'] = [request_json_body['stop']]
|
||||
|
||||
if stop_hashes:
|
||||
if opts.openai_force_no_hashes:
|
||||
if GlobalConfig.get().openai_force_no_hashes:
|
||||
request_json_body['stop'].append('###')
|
||||
else:
|
||||
# TODO: make stopping strings a configurable
|
||||
|
@ -30,7 +30,7 @@ def oai_to_vllm(request_json_body, stop_hashes: bool, mode):
|
|||
if mode == 'vllm' and request_json_body.get('top_p') == 0:
|
||||
request_json_body['top_p'] = 0.01
|
||||
|
||||
request_json_body['max_tokens'] = min(max(request_json_body.get('max_new_tokens', 0), request_json_body.get('max_tokens', 0)), opts.max_new_tokens)
|
||||
request_json_body['max_tokens'] = min(max(request_json_body.get('max_new_tokens', 0), request_json_body.get('max_tokens', 0)), GlobalConfig.get().max_new_tokens)
|
||||
if request_json_body['max_tokens'] == 0:
|
||||
# We don't want to set any defaults here.
|
||||
del request_json_body['max_tokens']
|
||||
|
|
|
@ -7,7 +7,7 @@ from typing import Dict, List
|
|||
|
||||
import tiktoken
|
||||
|
||||
from llm_server import opts
|
||||
from llm_server.config.global_config import GlobalConfig
|
||||
from llm_server.llm import get_token_count
|
||||
|
||||
ANTI_RESPONSE_RE = re.compile(r'^### (.*?)(?:\:)?\s') # Match a "### XXX" line.
|
||||
|
@ -85,7 +85,7 @@ def trim_string_to_fit(prompt: str, context_token_limit: int, backend_url: str)
|
|||
|
||||
def transform_messages_to_prompt(oai_messages):
|
||||
try:
|
||||
prompt = f'### INSTRUCTION: {opts.openai_system_prompt}'
|
||||
prompt = f'### INSTRUCTION: {GlobalConfig.get().openai_system_prompt}'
|
||||
for msg in oai_messages:
|
||||
if 'content' not in msg.keys() or 'role' not in msg.keys():
|
||||
return False
|
||||
|
|
|
@ -4,7 +4,7 @@ This file is used by the worker that processes requests.
|
|||
|
||||
import requests
|
||||
|
||||
from llm_server import opts
|
||||
from llm_server.config.global_config import GlobalConfig
|
||||
|
||||
|
||||
# TODO: make the VLMM backend return TPS and time elapsed
|
||||
|
@ -25,7 +25,7 @@ def transform_prompt_to_text(prompt: list):
|
|||
|
||||
def handle_blocking_request(json_data: dict, cluster_backend, timeout: int = 10):
|
||||
try:
|
||||
r = requests.post(f'{cluster_backend}/generate', json=prepare_json(json_data), verify=opts.verify_ssl, timeout=opts.backend_generate_request_timeout if not timeout else timeout)
|
||||
r = requests.post(f'{cluster_backend}/generate', json=prepare_json(json_data), verify=GlobalConfig.get().verify_ssl, timeout=GlobalConfig.get().backend_generate_request_timeout if not timeout else timeout)
|
||||
except requests.exceptions.ReadTimeout:
|
||||
# print(f'Failed to reach VLLM inference endpoint - request to backend timed out')
|
||||
return False, None, 'Request to backend timed out'
|
||||
|
@ -41,7 +41,7 @@ def handle_blocking_request(json_data: dict, cluster_backend, timeout: int = 10)
|
|||
def generate(json_data: dict, cluster_backend, timeout: int = None):
|
||||
if json_data.get('stream'):
|
||||
try:
|
||||
return requests.post(f'{cluster_backend}/generate', json=prepare_json(json_data), stream=True, verify=opts.verify_ssl, timeout=opts.backend_generate_request_timeout if not timeout else timeout)
|
||||
return requests.post(f'{cluster_backend}/generate', json=prepare_json(json_data), stream=True, verify=GlobalConfig.get().verify_ssl, timeout=GlobalConfig.get().backend_generate_request_timeout if not timeout else timeout)
|
||||
except Exception as e:
|
||||
return False
|
||||
else:
|
||||
|
|
|
@ -1,7 +1,3 @@
|
|||
import requests
|
||||
|
||||
from llm_server import opts
|
||||
|
||||
vllm_info = """<p><strong>Important:</strong> This endpoint is running <a href="https://github.com/vllm-project/vllm" target="_blank">vllm</a> and not all Oobabooga parameters are supported.</p>
|
||||
<strong>Supported Parameters:</strong>
|
||||
<ul>
|
||||
|
|
|
@ -3,8 +3,8 @@ import concurrent.futures
|
|||
import requests
|
||||
import tiktoken
|
||||
|
||||
from llm_server import opts
|
||||
from llm_server.cluster.cluster_config import cluster_config
|
||||
from llm_server.config.global_config import GlobalConfig
|
||||
from llm_server.logging import create_logger
|
||||
|
||||
|
||||
|
@ -32,7 +32,7 @@ def tokenize(prompt: str, backend_url: str) -> int:
|
|||
# Define a function to send a chunk to the server
|
||||
def send_chunk(chunk):
|
||||
try:
|
||||
r = requests.post(f'{backend_url}/tokenize', json={'input': chunk}, verify=opts.verify_ssl, timeout=opts.backend_generate_request_timeout)
|
||||
r = requests.post(f'{backend_url}/tokenize', json={'input': chunk}, verify=GlobalConfig.get().verify_ssl, timeout=GlobalConfig.get().backend_generate_request_timeout)
|
||||
j = r.json()
|
||||
return j['length']
|
||||
except Exception as e:
|
||||
|
|
|
@ -1,45 +1,10 @@
|
|||
# Read-only global variables
|
||||
|
||||
# Uppercase variables are read-only globals.
|
||||
# Lowercase variables are ones that are set on startup and are never changed.
|
||||
default_openai_system_prompt = """You are an assistant chatbot. Your main function is to provide accurate and helpful responses to the user's queries. You should always be polite, respectful, and patient. You should not provide any personal opinions or advice unless specifically asked by the user. You should not make any assumptions about the user's knowledge or abilities. You should always strive to provide clear and concise answers. If you do not understand a user's query, ask for clarification. If you cannot provide an answer, apologize and suggest the user seek help elsewhere.\nLines that start with "### ASSISTANT" were messages you sent previously.\nLines that start with "### USER" were messages sent by the user you are chatting with.\nYou will respond to the "### RESPONSE:" prompt as the assistant and follow the instructions given by the user.\n\n"""
|
||||
|
||||
# TODO: rewrite the config system so I don't have to add every single config default here
|
||||
# cluster = {}
|
||||
|
||||
frontend_api_mode = 'ooba'
|
||||
max_new_tokens = 500
|
||||
auth_required = False
|
||||
log_prompts = False
|
||||
frontend_api_client = ''
|
||||
verify_ssl = True
|
||||
show_num_prompts = True
|
||||
show_uptime = True
|
||||
average_generation_time_mode = 'database'
|
||||
show_total_output_tokens = True
|
||||
netdata_root = None
|
||||
simultaneous_requests_per_ip = 3
|
||||
manual_model_name = None
|
||||
llm_middleware_name = ''
|
||||
enable_openi_compatible_backend = True
|
||||
openai_system_prompt = """You are an assistant chatbot. Your main function is to provide accurate and helpful responses to the user's queries. You should always be polite, respectful, and patient. You should not provide any personal opinions or advice unless specifically asked by the user. You should not make any assumptions about the user's knowledge or abilities. You should always strive to provide clear and concise answers. If you do not understand a user's query, ask for clarification. If you cannot provide an answer, apologize and suggest the user seek help elsewhere.\nLines that start with "### ASSISTANT" were messages you sent previously.\nLines that start with "### USER" were messages sent by the user you are chatting with.\nYou will respond to the "### RESPONSE:" prompt as the assistant and follow the instructions given by the user.\n\n"""
|
||||
expose_openai_system_prompt = True
|
||||
enable_streaming = True
|
||||
openai_api_key = None
|
||||
backend_request_timeout = 30
|
||||
backend_generate_request_timeout = 95
|
||||
admin_token = None
|
||||
openai_expose_our_model = False
|
||||
openai_force_no_hashes = True
|
||||
include_system_tokens_in_stats = True
|
||||
openai_moderation_scan_last_n = 5
|
||||
openai_org_name = 'OpenAI'
|
||||
openai_silent_trim = False
|
||||
openai_moderation_enabled = True
|
||||
cluster = {}
|
||||
show_backends = True
|
||||
background_homepage_cacher = True
|
||||
openai_moderation_timeout = 5
|
||||
prioritize_by_size = False
|
||||
cluster_workers = 0
|
||||
redis_stream_timeout = 25000
|
||||
|
||||
REDIS_STREAM_TIMEOUT = 25000
|
||||
|
||||
LOGGING_FORMAT = "%(asctime)s: %(levelname)s:%(name)s - %(message)s"
|
||||
|
|
|
@ -3,7 +3,7 @@ from functools import wraps
|
|||
import basicauth
|
||||
from flask import Response, request
|
||||
|
||||
from llm_server import opts
|
||||
from llm_server.config.global_config import GlobalConfig
|
||||
|
||||
|
||||
def parse_token(input_token):
|
||||
|
@ -21,11 +21,11 @@ def parse_token(input_token):
|
|||
|
||||
|
||||
def check_auth(token):
|
||||
if not opts.admin_token:
|
||||
if not GlobalConfig.get().admin_token:
|
||||
# The admin token is not set/enabled.
|
||||
# Default: deny all.
|
||||
return False
|
||||
return parse_token(token) == opts.admin_token
|
||||
return parse_token(token) == GlobalConfig.get().admin_token
|
||||
|
||||
|
||||
def authenticate():
|
||||
|
|
|
@ -1,14 +1,14 @@
|
|||
import simplejson as json
|
||||
import traceback
|
||||
from functools import wraps
|
||||
from typing import Union
|
||||
|
||||
import flask
|
||||
import requests
|
||||
import simplejson as json
|
||||
from flask import Request, make_response
|
||||
from flask import jsonify, request
|
||||
|
||||
from llm_server import opts
|
||||
from llm_server.config.global_config import GlobalConfig
|
||||
from llm_server.database.database import is_valid_api_key
|
||||
from llm_server.routes.auth import parse_token
|
||||
|
||||
|
@ -34,7 +34,7 @@ def cache_control(seconds):
|
|||
# response = require_api_key()
|
||||
# ^^^^^^^^^^^^^^^^^
|
||||
# File "/srv/server/local-llm-server/llm_server/routes/helpers/http.py", line 50, in require_api_key
|
||||
# if token.startswith('SYSTEM__') or opts.auth_required:
|
||||
# if token.startswith('SYSTEM__') or GlobalConfig.get().auth_required:
|
||||
# ^^^^^^^^^^^^^^^^
|
||||
# AttributeError: 'NoneType' object has no attribute 'startswith'
|
||||
|
||||
|
@ -50,14 +50,14 @@ def require_api_key(json_body: dict = None):
|
|||
request_json = None
|
||||
if 'X-Api-Key' in request.headers:
|
||||
api_key = request.headers['X-Api-Key']
|
||||
if api_key.startswith('SYSTEM__') or opts.auth_required:
|
||||
if api_key.startswith('SYSTEM__') or GlobalConfig.get().auth_required:
|
||||
if is_valid_api_key(api_key):
|
||||
return
|
||||
else:
|
||||
return jsonify({'code': 403, 'message': 'Invalid API key'}), 403
|
||||
elif 'Authorization' in request.headers:
|
||||
token = parse_token(request.headers['Authorization'])
|
||||
if (token and token.startswith('SYSTEM__')) or opts.auth_required:
|
||||
if (token and token.startswith('SYSTEM__')) or GlobalConfig.get().auth_required:
|
||||
if is_valid_api_key(token):
|
||||
return
|
||||
else:
|
||||
|
@ -65,13 +65,13 @@ def require_api_key(json_body: dict = None):
|
|||
else:
|
||||
try:
|
||||
# Handle websockets
|
||||
if opts.auth_required and not request_json:
|
||||
if GlobalConfig.get().auth_required and not request_json:
|
||||
# If we didn't get any valid JSON, deny.
|
||||
return jsonify({'code': 403, 'message': 'Invalid API key'}), 403
|
||||
|
||||
if request_json and request_json.get('X-API-KEY'):
|
||||
api_key = request_json.get('X-API-KEY')
|
||||
if api_key.startswith('SYSTEM__') or opts.auth_required:
|
||||
if api_key.startswith('SYSTEM__') or GlobalConfig.get().auth_required:
|
||||
if is_valid_api_key(api_key):
|
||||
return
|
||||
else:
|
||||
|
|
|
@ -3,7 +3,8 @@ from typing import Tuple
|
|||
import flask
|
||||
from flask import jsonify, request
|
||||
|
||||
from llm_server import messages, opts
|
||||
from llm_server import messages
|
||||
from llm_server.config.global_config import GlobalConfig
|
||||
from llm_server.database.log_to_db import log_to_db
|
||||
from llm_server.logging import create_logger
|
||||
from llm_server.routes.helpers.client import format_sillytavern_err
|
||||
|
@ -39,7 +40,7 @@ class OobaRequestHandler(RequestHandler):
|
|||
return backend_response
|
||||
|
||||
def handle_ratelimited(self, do_log: bool = True):
|
||||
msg = f'Ratelimited: you are only allowed to have {opts.simultaneous_requests_per_ip} simultaneous requests at a time. Please complete your other requests before sending another.'
|
||||
msg = f'Ratelimited: you are only allowed to have {GlobalConfig.get().simultaneous_requests_per_ip} simultaneous requests at a time. Please complete your other requests before sending another.'
|
||||
backend_response = self.handle_error(msg)
|
||||
if do_log:
|
||||
log_to_db(self.client_ip, self.token, self.request_json_body.get('prompt', ''), backend_response[0].data.decode('utf-8'), None, self.parameters, dict(self.request.headers), 429, self.request.url, self.backend_url, is_error=True)
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
from flask import Blueprint
|
||||
|
||||
from ..request_handler import before_request
|
||||
from ... import opts
|
||||
from ...config.global_config import GlobalConfig
|
||||
from ...logging import create_logger
|
||||
|
||||
_logger = create_logger('OpenAI')
|
||||
|
@ -13,7 +13,7 @@ openai_model_bp = Blueprint('openai/', __name__)
|
|||
@openai_bp.before_request
|
||||
@openai_model_bp.before_request
|
||||
def before_oai_request():
|
||||
if not opts.enable_openi_compatible_backend:
|
||||
if not GlobalConfig.get().enable_openi_compatible_backend:
|
||||
return 'The OpenAI-compatible backend is disabled.', 401
|
||||
return before_request()
|
||||
|
||||
|
|
|
@ -11,7 +11,7 @@ from . import openai_bp, openai_model_bp
|
|||
from ..helpers.http import validate_json
|
||||
from ..openai_request_handler import OpenAIRequestHandler
|
||||
from ..queue import priority_queue
|
||||
from ... import opts
|
||||
from ...config.global_config import GlobalConfig
|
||||
from ...database.log_to_db import log_to_db
|
||||
from ...llm.openai.oai_to_vllm import oai_to_vllm, return_invalid_model_err, validate_oai
|
||||
from ...llm.openai.transform import generate_oai_string, transform_messages_to_prompt, trim_messages_to_fit
|
||||
|
@ -41,7 +41,7 @@ def openai_chat_completions(model_name=None):
|
|||
traceback.print_exc()
|
||||
return 'Internal server error', 500
|
||||
else:
|
||||
if not opts.enable_streaming:
|
||||
if not GlobalConfig.get().enable_streaming:
|
||||
return 'Streaming disabled', 403
|
||||
|
||||
invalid_oai_err_msg = validate_oai(handler.request_json_body)
|
||||
|
@ -57,7 +57,7 @@ def openai_chat_completions(model_name=None):
|
|||
**handler.parameters
|
||||
}
|
||||
|
||||
if opts.openai_silent_trim:
|
||||
if GlobalConfig.get().openai_silent_trim:
|
||||
handler.prompt = transform_messages_to_prompt(trim_messages_to_fit(handler.request.json['messages'], handler.cluster_backend_info['model_config']['max_position_embeddings'], handler.backend_url))
|
||||
else:
|
||||
handler.prompt = transform_messages_to_prompt(handler.request.json['messages'])
|
||||
|
@ -95,7 +95,7 @@ def openai_chat_completions(model_name=None):
|
|||
try:
|
||||
r_headers = dict(request.headers)
|
||||
r_url = request.url
|
||||
model = redis.get('running_model', 'ERROR', dtype=str) if opts.openai_expose_our_model else request_json_body.get('model')
|
||||
model = redis.get('running_model', 'ERROR', dtype=str) if GlobalConfig.get().openai_expose_our_model else request_json_body.get('model')
|
||||
oai_string = generate_oai_string(30)
|
||||
|
||||
# Need to do this before we enter generate() since we want to be able to
|
||||
|
@ -112,9 +112,9 @@ def openai_chat_completions(model_name=None):
|
|||
try:
|
||||
last_id = '0-0'
|
||||
while True:
|
||||
stream_data = stream_redis.xread({stream_name: last_id}, block=opts.redis_stream_timeout)
|
||||
stream_data = stream_redis.xread({stream_name: last_id}, block=GlobalConfig.get().REDIS_STREAM_TIMEOUT)
|
||||
if not stream_data:
|
||||
_logger.debug(f"No message received in {opts.redis_stream_timeout / 1000} seconds, closing stream.")
|
||||
_logger.debug(f"No message received in {GlobalConfig.get().REDIS_STREAM_TIMEOUT / 1000} seconds, closing stream.")
|
||||
yield 'data: [DONE]\n\n'
|
||||
else:
|
||||
for stream_index, item in stream_data[0][1]:
|
||||
|
|
|
@ -11,7 +11,7 @@ from . import openai_bp, openai_model_bp
|
|||
from ..helpers.http import validate_json
|
||||
from ..ooba_request_handler import OobaRequestHandler
|
||||
from ..queue import priority_queue
|
||||
from ... import opts
|
||||
from ...config.global_config import GlobalConfig
|
||||
from ...database.log_to_db import log_to_db
|
||||
from ...llm import get_token_count
|
||||
from ...llm.openai.oai_to_vllm import oai_to_vllm, return_invalid_model_err, validate_oai
|
||||
|
@ -43,7 +43,7 @@ def openai_completions(model_name=None):
|
|||
return invalid_oai_err_msg
|
||||
handler.request_json_body = oai_to_vllm(handler.request_json_body, stop_hashes=False, mode=handler.cluster_backend_info['mode'])
|
||||
|
||||
if opts.openai_silent_trim:
|
||||
if GlobalConfig.get().openai_silent_trim:
|
||||
handler.prompt = trim_string_to_fit(request_json_body['prompt'], handler.cluster_backend_info['model_config']['max_position_embeddings'], handler.backend_url)
|
||||
else:
|
||||
# The handle_request() call below will load the prompt so we don't have
|
||||
|
@ -69,7 +69,7 @@ def openai_completions(model_name=None):
|
|||
"id": f"cmpl-{generate_oai_string(30)}",
|
||||
"object": "text_completion",
|
||||
"created": int(time.time()),
|
||||
"model": running_model if opts.openai_expose_our_model else request_json_body.get('model'),
|
||||
"model": running_model if GlobalConfig.get().openai_expose_our_model else request_json_body.get('model'),
|
||||
"choices": [
|
||||
{
|
||||
"text": output,
|
||||
|
@ -91,7 +91,7 @@ def openai_completions(model_name=None):
|
|||
# response.headers['x-ratelimit-reset-requests'] = stats['queue']['estimated_wait_sec']
|
||||
return response, 200
|
||||
else:
|
||||
if not opts.enable_streaming:
|
||||
if not GlobalConfig.get().enable_streaming:
|
||||
return 'Streaming disabled', 403
|
||||
|
||||
request_valid, invalid_response = handler.validate_request()
|
||||
|
@ -109,7 +109,7 @@ def openai_completions(model_name=None):
|
|||
if invalid_oai_err_msg:
|
||||
return invalid_oai_err_msg
|
||||
|
||||
if opts.openai_silent_trim:
|
||||
if GlobalConfig.get().openai_silent_trim:
|
||||
handler.request_json_body['prompt'] = handler.request_json_body['prompt'][:handler.cluster_backend_info['model_config']['max_position_embeddings']]
|
||||
if not handler.prompt:
|
||||
# Prevent issues on the backend.
|
||||
|
@ -142,7 +142,7 @@ def openai_completions(model_name=None):
|
|||
try:
|
||||
r_headers = dict(request.headers)
|
||||
r_url = request.url
|
||||
model = redis.get('running_model', 'ERROR', dtype=str) if opts.openai_expose_our_model else request_json_body.get('model')
|
||||
model = redis.get('running_model', 'ERROR', dtype=str) if GlobalConfig.get().openai_expose_our_model else request_json_body.get('model')
|
||||
oai_string = generate_oai_string(30)
|
||||
|
||||
_, stream_name, error_msg = event.wait()
|
||||
|
@ -157,9 +157,9 @@ def openai_completions(model_name=None):
|
|||
try:
|
||||
last_id = '0-0'
|
||||
while True:
|
||||
stream_data = stream_redis.xread({stream_name: last_id}, block=opts.redis_stream_timeout)
|
||||
stream_data = stream_redis.xread({stream_name: last_id}, block=GlobalConfig.get().REDIS_STREAM_TIMEOUT)
|
||||
if not stream_data:
|
||||
_logger.debug(f"No message received in {opts.redis_stream_timeout / 1000} seconds, closing stream.")
|
||||
_logger.debug(f"No message received in {GlobalConfig.get().REDIS_STREAM_TIMEOUT / 1000} seconds, closing stream.")
|
||||
yield 'data: [DONE]\n\n'
|
||||
else:
|
||||
for stream_index, item in stream_data[0][1]:
|
||||
|
|
|
@ -1,15 +1,15 @@
|
|||
from flask import Response
|
||||
|
||||
from . import openai_bp
|
||||
from llm_server.custom_redis import flask_cache
|
||||
from ... import opts
|
||||
from . import openai_bp
|
||||
from ...config.global_config import GlobalConfig
|
||||
|
||||
|
||||
@openai_bp.route('/prompt', methods=['GET'])
|
||||
@flask_cache.cached(timeout=2678000, query_string=True)
|
||||
def get_openai_info():
|
||||
if opts.expose_openai_system_prompt:
|
||||
resp = Response(opts.openai_system_prompt)
|
||||
if GlobalConfig.get().expose_openai_system_prompt:
|
||||
resp = Response(GlobalConfig.get().openai_system_prompt)
|
||||
resp.headers['Content-Type'] = 'text/plain'
|
||||
return resp, 200
|
||||
else:
|
||||
|
|
|
@ -6,8 +6,8 @@ from flask import jsonify
|
|||
from llm_server.custom_redis import ONE_MONTH_SECONDS, flask_cache, redis
|
||||
from . import openai_bp
|
||||
from ..stats import server_start_time
|
||||
from ... import opts
|
||||
from ...cluster.cluster_config import get_a_cluster_backend, cluster_config
|
||||
from ...config.global_config import GlobalConfig
|
||||
from ...helpers import jsonify_pretty
|
||||
from ...llm.openai.transform import generate_oai_string
|
||||
|
||||
|
@ -29,12 +29,12 @@ def openai_list_models():
|
|||
"data": oai
|
||||
}
|
||||
# TODO: verify this works
|
||||
if opts.openai_expose_our_model:
|
||||
if GlobalConfig.get().openai_expose_our_model:
|
||||
r["data"].insert(0, {
|
||||
"id": running_model,
|
||||
"object": "model",
|
||||
"created": int(server_start_time.timestamp()),
|
||||
"owned_by": opts.llm_middleware_name,
|
||||
"owned_by": GlobalConfig.get().llm_middleware_name,
|
||||
"permission": [
|
||||
{
|
||||
"id": running_model,
|
||||
|
@ -60,9 +60,9 @@ def openai_list_models():
|
|||
|
||||
@flask_cache.memoize(timeout=ONE_MONTH_SECONDS)
|
||||
def fetch_openai_models():
|
||||
if opts.openai_api_key:
|
||||
if GlobalConfig.get().openai_api_key:
|
||||
try:
|
||||
response = requests.get('https://api.openai.com/v1/models', headers={'Authorization': f"Bearer {opts.openai_api_key}"}, timeout=10)
|
||||
response = requests.get('https://api.openai.com/v1/models', headers={'Authorization': f"Bearer {GlobalConfig.get().openai_api_key}"}, timeout=10)
|
||||
j = response.json()['data']
|
||||
|
||||
# The "modelperm" string appears to be user-specific, so we'll
|
||||
|
|
|
@ -8,8 +8,8 @@ from uuid import uuid4
|
|||
import flask
|
||||
from flask import Response, jsonify, make_response
|
||||
|
||||
from llm_server import opts
|
||||
from llm_server.cluster.backend import get_model_choices
|
||||
from llm_server.config.global_config import GlobalConfig
|
||||
from llm_server.custom_redis import redis
|
||||
from llm_server.database.database import is_api_key_moderated
|
||||
from llm_server.database.log_to_db import log_to_db
|
||||
|
@ -35,7 +35,7 @@ class OpenAIRequestHandler(RequestHandler):
|
|||
_logger.error(f'OAI is offline: {msg}')
|
||||
return self.handle_error(msg)
|
||||
|
||||
if opts.openai_silent_trim:
|
||||
if GlobalConfig.get().openai_silent_trim:
|
||||
oai_messages = trim_messages_to_fit(self.request.json['messages'], self.cluster_backend_info['model_config']['max_position_embeddings'], self.backend_url)
|
||||
else:
|
||||
oai_messages = self.request.json['messages']
|
||||
|
@ -58,20 +58,20 @@ class OpenAIRequestHandler(RequestHandler):
|
|||
if invalid_oai_err_msg:
|
||||
return invalid_oai_err_msg
|
||||
|
||||
if opts.openai_moderation_enabled and opts.openai_api_key and is_api_key_moderated(self.token):
|
||||
if GlobalConfig.get().openai_moderation_enabled and GlobalConfig.get().openai_api_key and is_api_key_moderated(self.token):
|
||||
try:
|
||||
# Gather the last message from the user and all preceding system messages
|
||||
msg_l = self.request.json['messages'].copy()
|
||||
msg_l.reverse()
|
||||
tag = uuid4()
|
||||
num_to_check = min(len(msg_l), opts.openai_moderation_scan_last_n)
|
||||
num_to_check = min(len(msg_l), GlobalConfig.get().openai_moderation_scan_last_n)
|
||||
for i in range(num_to_check):
|
||||
add_moderation_task(msg_l[i]['content'], tag)
|
||||
|
||||
flagged_categories = get_results(tag, num_to_check)
|
||||
|
||||
if len(flagged_categories):
|
||||
mod_msg = f"The user's message does not comply with {opts.openai_org_name} policies. Offending categories: {json.dumps(flagged_categories)}. You are instructed to creatively adhere to these policies."
|
||||
mod_msg = f"The user's message does not comply with {GlobalConfig.get().openai_org_name} policies. Offending categories: {json.dumps(flagged_categories)}. You are instructed to creatively adhere to these policies."
|
||||
self.request.json['messages'].insert((len(self.request.json['messages'])), {'role': 'system', 'content': mod_msg})
|
||||
self.prompt = transform_messages_to_prompt(self.request.json['messages'])
|
||||
except Exception as e:
|
||||
|
@ -137,7 +137,7 @@ class OpenAIRequestHandler(RequestHandler):
|
|||
"id": f"chatcmpl-{generate_oai_string(30)}",
|
||||
"object": "chat.completion",
|
||||
"created": int(time.time()),
|
||||
"model": running_model if opts.openai_expose_our_model else model,
|
||||
"model": running_model if GlobalConfig.get().openai_expose_our_model else model,
|
||||
"choices": [{
|
||||
"index": 0,
|
||||
"message": {
|
||||
|
|
|
@ -6,8 +6,8 @@ from uuid import uuid4
|
|||
import ujson as json
|
||||
from redis import Redis
|
||||
|
||||
from llm_server import opts
|
||||
from llm_server.cluster.cluster_config import cluster_config
|
||||
from llm_server.config.global_config import GlobalConfig
|
||||
from llm_server.custom_redis import RedisCustom, redis
|
||||
from llm_server.database.database import get_token_ratelimit
|
||||
from llm_server.logging import create_logger
|
||||
|
@ -95,7 +95,7 @@ class RedisPriorityQueue:
|
|||
for item in self.items():
|
||||
item_data = json.loads(item)
|
||||
timestamp = item_data[-2]
|
||||
if now - timestamp > opts.backend_generate_request_timeout:
|
||||
if now - timestamp > GlobalConfig.get().backend_generate_request_timeout:
|
||||
self.redis.zrem('queue', 0, item)
|
||||
event_id = item_data[1]
|
||||
event = DataEvent(event_id)
|
||||
|
|
|
@ -4,8 +4,8 @@ from typing import Tuple, Union
|
|||
import flask
|
||||
from flask import Response, request
|
||||
|
||||
from llm_server import opts
|
||||
from llm_server.cluster.cluster_config import get_a_cluster_backend, cluster_config
|
||||
from llm_server.config.global_config import GlobalConfig
|
||||
from llm_server.custom_redis import redis
|
||||
from llm_server.database.database import get_token_ratelimit
|
||||
from llm_server.database.log_to_db import log_to_db
|
||||
|
@ -106,8 +106,8 @@ class RequestHandler:
|
|||
if self.parameters and not parameters_invalid_msg:
|
||||
# Backends shouldn't check max_new_tokens, but rather things specific to their backend.
|
||||
# Let the RequestHandler do the generic checks.
|
||||
if self.parameters.get('max_new_tokens', 0) > opts.max_new_tokens:
|
||||
invalid_request_err_msgs.append(f'`max_new_tokens` must be less than or equal to {opts.max_new_tokens}')
|
||||
if self.parameters.get('max_new_tokens', 0) > GlobalConfig.get().max_new_tokens:
|
||||
invalid_request_err_msgs.append(f'`max_new_tokens` must be less than or equal to {GlobalConfig.get().max_new_tokens}')
|
||||
|
||||
if prompt:
|
||||
prompt_valid, invalid_prompt_err_msg = self.backend.validate_prompt(prompt)
|
||||
|
|
|
@ -1,9 +1,9 @@
|
|||
import time
|
||||
from datetime import datetime
|
||||
|
||||
from llm_server import opts
|
||||
from llm_server.cluster.backend import get_model_choices
|
||||
from llm_server.cluster.cluster_config import cluster_config
|
||||
from llm_server.config.global_config import GlobalConfig
|
||||
from llm_server.custom_redis import redis
|
||||
from llm_server.database.database import get_distinct_ips_24h, sum_column
|
||||
from llm_server.helpers import deep_sort
|
||||
|
@ -31,21 +31,21 @@ def generate_stats(regen: bool = False):
|
|||
'5_min': proompters_5_min,
|
||||
'24_hrs': get_distinct_ips_24h(),
|
||||
},
|
||||
'proompts_total': get_total_proompts() if opts.show_num_prompts else None,
|
||||
'uptime': int((datetime.now() - server_start_time).total_seconds()) if opts.show_uptime else None,
|
||||
'proompts_total': get_total_proompts() if GlobalConfig.get().show_num_prompts else None,
|
||||
'uptime': int((datetime.now() - server_start_time).total_seconds()) if GlobalConfig.get().show_uptime else None,
|
||||
# 'estimated_avg_tps': estimated_avg_tps,
|
||||
'tokens_generated': sum_column('prompts', 'response_tokens') if opts.show_total_output_tokens else None,
|
||||
'num_backends': len(cluster_config.all()) if opts.show_backends else None,
|
||||
'tokens_generated': sum_column('prompts', 'response_tokens') if GlobalConfig.get().show_total_output_tokens else None,
|
||||
'num_backends': len(cluster_config.all()) if GlobalConfig.get().show_backends else None,
|
||||
},
|
||||
'endpoints': {
|
||||
'blocking': f'https://{base_client_api}',
|
||||
'streaming': f'wss://{base_client_api}/v1/stream' if opts.enable_streaming else None,
|
||||
'streaming': f'wss://{base_client_api}/v1/stream' if GlobalConfig.get().enable_streaming else None,
|
||||
},
|
||||
'timestamp': int(time.time()),
|
||||
'config': {
|
||||
'gatekeeper': 'none' if opts.auth_required is False else 'token',
|
||||
'simultaneous_requests_per_ip': opts.simultaneous_requests_per_ip,
|
||||
'api_mode': opts.frontend_api_mode
|
||||
'gatekeeper': 'none' if GlobalConfig.get().auth_required is False else 'token',
|
||||
'simultaneous_requests_per_ip': GlobalConfig.get().simultaneous_requests_per_ip,
|
||||
'api_mode': GlobalConfig.get().frontend_api_mode
|
||||
},
|
||||
'keys': {
|
||||
'openaiKeys': '∞',
|
||||
|
@ -57,12 +57,12 @@ def generate_stats(regen: bool = False):
|
|||
|
||||
# TODO: have get_model_choices() return all the info so we don't have to loop over the backends ourself
|
||||
|
||||
if opts.show_backends:
|
||||
if GlobalConfig.get().show_backends:
|
||||
for backend_url, v in cluster_config.all().items():
|
||||
backend_info = cluster_config.get_backend(backend_url)
|
||||
if not backend_info['online']:
|
||||
continue
|
||||
backend_uptime = int((datetime.now() - datetime.fromtimestamp(backend_info['startup_time'])).total_seconds()) if opts.show_uptime else None
|
||||
backend_uptime = int((datetime.now() - datetime.fromtimestamp(backend_info['startup_time'])).total_seconds()) if GlobalConfig.get().show_uptime else None
|
||||
output['backends'][backend_info['hash']] = {
|
||||
'uptime': backend_uptime,
|
||||
'max_tokens': backend_info['model_config'].get('max_position_embeddings', -1),
|
||||
|
|
|
@ -10,7 +10,7 @@ from . import bp
|
|||
from ..helpers.http import require_api_key, validate_json
|
||||
from ..ooba_request_handler import OobaRequestHandler
|
||||
from ..queue import priority_queue
|
||||
from ... import opts
|
||||
from ...config.global_config import GlobalConfig
|
||||
from ...custom_redis import redis
|
||||
from ...database.log_to_db import log_to_db
|
||||
from ...logging import create_logger
|
||||
|
@ -66,7 +66,7 @@ def do_stream(ws, model_name):
|
|||
is_error=True
|
||||
)
|
||||
|
||||
if not opts.enable_streaming:
|
||||
if not GlobalConfig.get().enable_streaming:
|
||||
return 'Streaming disabled', 403
|
||||
|
||||
r_headers = dict(request.headers)
|
||||
|
@ -144,9 +144,9 @@ def do_stream(ws, model_name):
|
|||
try:
|
||||
last_id = '0-0' # The ID of the last entry we read.
|
||||
while True:
|
||||
stream_data = stream_redis.xread({stream_name: last_id}, block=opts.redis_stream_timeout)
|
||||
stream_data = stream_redis.xread({stream_name: last_id}, block=GlobalConfig.get().REDIS_STREAM_TIMEOUT)
|
||||
if not stream_data:
|
||||
_logger.error(f"No message received in {opts.redis_stream_timeout / 1000} seconds, closing stream.")
|
||||
_logger.error(f"No message received in {GlobalConfig.get().REDIS_STREAM_TIMEOUT / 1000} seconds, closing stream.")
|
||||
return
|
||||
else:
|
||||
for stream_index, item in stream_data[0][1]:
|
||||
|
|
|
@ -4,9 +4,9 @@ from flask import jsonify, request
|
|||
|
||||
from llm_server.custom_redis import flask_cache
|
||||
from . import bp
|
||||
from ... import opts
|
||||
from ...cluster.backend import get_backends_from_model, is_valid_model
|
||||
from ...cluster.cluster_config import get_a_cluster_backend, cluster_config
|
||||
from ...config.global_config import GlobalConfig
|
||||
|
||||
|
||||
@bp.route('/v1/model', methods=['GET'])
|
||||
|
@ -31,7 +31,7 @@ def get_model(model_name=None):
|
|||
else:
|
||||
num_backends = len(get_backends_from_model(model_name))
|
||||
response = jsonify({
|
||||
'result': opts.manual_model_name if opts.manual_model_name else model_name,
|
||||
'result': GlobalConfig.get().manual_model_name if GlobalConfig.get().manual_model_name else model_name,
|
||||
'model_backend_count': num_backends,
|
||||
'timestamp': int(time.time())
|
||||
}), 200
|
||||
|
|
|
@ -2,8 +2,8 @@ import time
|
|||
|
||||
import requests
|
||||
|
||||
from llm_server import opts
|
||||
from llm_server.cluster.cluster_config import get_backends, cluster_config
|
||||
from llm_server.config.global_config import GlobalConfig
|
||||
from llm_server.custom_redis import redis
|
||||
from llm_server.database.database import weighted_average_column_for_model
|
||||
from llm_server.llm.info import get_info
|
||||
|
@ -31,7 +31,7 @@ def main_background_thread():
|
|||
if average_generation_elapsed_sec and average_output_tokens:
|
||||
cluster_config.set_backend_value(backend_url, 'estimated_avg_tps', estimated_avg_tps)
|
||||
|
||||
if opts.background_homepage_cacher:
|
||||
if GlobalConfig.get().background_homepage_cacher:
|
||||
try:
|
||||
base_client_api = redis.get('base_client_api', dtype=str)
|
||||
r = requests.get('https://' + base_client_api, timeout=5)
|
||||
|
@ -51,9 +51,9 @@ def calc_stats_for_backend(backend_url, running_model, backend_mode):
|
|||
# was entered into the column. The new code enters null instead but we need to be backwards compatible for now.
|
||||
average_generation_elapsed_sec = weighted_average_column_for_model('prompts', 'generation_time',
|
||||
running_model, backend_mode, backend_url, exclude_zeros=True,
|
||||
include_system_tokens=opts.include_system_tokens_in_stats) or 0
|
||||
include_system_tokens=GlobalConfig.get().include_system_tokens_in_stats) or 0
|
||||
average_output_tokens = weighted_average_column_for_model('prompts', 'response_tokens',
|
||||
running_model, backend_mode, backend_url, exclude_zeros=True,
|
||||
include_system_tokens=opts.include_system_tokens_in_stats) or 0
|
||||
include_system_tokens=GlobalConfig.get().include_system_tokens_in_stats) or 0
|
||||
estimated_avg_tps = round(average_output_tokens / average_generation_elapsed_sec, 2) if average_generation_elapsed_sec > 0 else 0 # Avoid division by zero
|
||||
return average_generation_elapsed_sec, average_output_tokens, estimated_avg_tps
|
||||
|
|
|
@ -5,7 +5,7 @@ import traceback
|
|||
|
||||
import redis as redis_redis
|
||||
|
||||
from llm_server import opts
|
||||
from llm_server.config.global_config import GlobalConfig
|
||||
from llm_server.llm.openai.moderation import check_moderation_endpoint
|
||||
from llm_server.logging import create_logger
|
||||
|
||||
|
@ -29,7 +29,7 @@ def get_results(tag, num_tasks):
|
|||
num_results = 0
|
||||
start_time = time.time()
|
||||
while num_results < num_tasks:
|
||||
result = redis_moderation.blpop(['queue:flagged_categories'], timeout=opts.openai_moderation_timeout)
|
||||
result = redis_moderation.blpop(['queue:flagged_categories'], timeout=GlobalConfig.get().openai_moderation_timeout)
|
||||
if result is None:
|
||||
break # Timeout occurred, break the loop.
|
||||
result_tag, categories = json.loads(result[1])
|
||||
|
@ -38,7 +38,7 @@ def get_results(tag, num_tasks):
|
|||
for item in categories:
|
||||
flagged_categories.add(item)
|
||||
num_results += 1
|
||||
if time.time() - start_time > opts.openai_moderation_timeout:
|
||||
if time.time() - start_time > GlobalConfig.get().openai_moderation_timeout:
|
||||
logger.warning('Timed out waiting for result from moderator')
|
||||
break
|
||||
return list(flagged_categories)
|
||||
|
|
|
@ -1,8 +1,9 @@
|
|||
import time
|
||||
from threading import Thread
|
||||
|
||||
from llm_server import opts
|
||||
from llm_server.cluster.worker import cluster_worker
|
||||
from llm_server.config.config import cluster_worker_count
|
||||
from llm_server.config.global_config import GlobalConfig
|
||||
from llm_server.logging import create_logger
|
||||
from llm_server.routes.v1.generate_stats import generate_stats
|
||||
from llm_server.workers.inferencer import start_workers
|
||||
|
@ -21,14 +22,14 @@ def cache_stats():
|
|||
|
||||
def start_background():
|
||||
logger = create_logger('threader')
|
||||
start_workers(opts.cluster)
|
||||
start_workers(GlobalConfig.get().cluster)
|
||||
|
||||
t = Thread(target=main_background_thread)
|
||||
t.daemon = True
|
||||
t.start()
|
||||
logger.info('Started the main background thread.')
|
||||
|
||||
num_moderators = opts.cluster_workers * 3
|
||||
num_moderators = cluster_worker_count() * 3
|
||||
start_moderation_workers(num_moderators)
|
||||
logger.info(f'Started {num_moderators} moderation workers.')
|
||||
|
||||
|
|
|
@ -15,3 +15,5 @@ redis==5.0.1
|
|||
ujson==5.8.0
|
||||
vllm==0.2.7
|
||||
coloredlogs~=15.0.1
|
||||
git+https://git.evulid.cc/cyberes/bison.git
|
||||
pydantic
|
||||
|
|
35
server.py
35
server.py
|
@ -1,5 +1,7 @@
|
|||
import time
|
||||
|
||||
from llm_server.config.global_config import GlobalConfig
|
||||
|
||||
try:
|
||||
import gevent.monkey
|
||||
|
||||
|
@ -16,13 +18,12 @@ import simplejson as json
|
|||
from flask import Flask, jsonify, render_template, request, Response
|
||||
|
||||
import config
|
||||
from llm_server import opts
|
||||
from llm_server.cluster.backend import get_model_choices
|
||||
from llm_server.cluster.cluster_config import cluster_config
|
||||
from llm_server.config.config import mode_ui_names
|
||||
from llm_server.config.load import load_config
|
||||
from llm_server.custom_redis import flask_cache, redis
|
||||
from llm_server.database.conn import database, Database
|
||||
from llm_server.database.conn import Database
|
||||
from llm_server.database.create import create_db
|
||||
from llm_server.helpers import auto_set_base_client_api
|
||||
from llm_server.llm.vllm.info import vllm_info
|
||||
|
@ -69,30 +70,24 @@ if config_path_environ:
|
|||
else:
|
||||
config_path = Path(script_path, 'config', 'config.yml')
|
||||
|
||||
success, config, msg = load_config(config_path)
|
||||
success, msg = load_config(config_path)
|
||||
if not success:
|
||||
logger = logging.getLogger('llm_server')
|
||||
logger.setLevel(logging.INFO)
|
||||
logger.error(f'Failed to load config: {msg}')
|
||||
sys.exit(1)
|
||||
|
||||
init_logging(Path(config['webserver_log_directory']) / 'server.log')
|
||||
init_logging(Path(GlobalConfig.get().webserver_log_directory) / 'server.log')
|
||||
logger = create_logger('Server')
|
||||
logger.debug('Debug logging enabled.')
|
||||
|
||||
try:
|
||||
import vllm
|
||||
except ModuleNotFoundError as e:
|
||||
logger.error(f'Could not import vllm-gptq: {e}')
|
||||
sys.exit(1)
|
||||
|
||||
while not redis.get('daemon_started', dtype=bool):
|
||||
logger.warning('Could not find the key daemon_started in Redis. Did you forget to start the daemon process?')
|
||||
time.sleep(10)
|
||||
|
||||
logger.info('Started HTTP worker!')
|
||||
|
||||
Database.initialise(maxconn=config['mysql']['maxconn'], host=config['mysql']['host'], user=config['mysql']['username'], password=config['mysql']['password'], database=config['mysql']['database'])
|
||||
Database.initialise(maxconn=GlobalConfig.get().mysql.maxconn, host=GlobalConfig.get().mysql.host, user=GlobalConfig.get().mysql.username, password=GlobalConfig.get().mysql.password, database=GlobalConfig.get().mysql.database)
|
||||
create_db()
|
||||
|
||||
app = Flask(__name__)
|
||||
|
@ -161,25 +156,25 @@ def home():
|
|||
break
|
||||
|
||||
return render_template('home.html',
|
||||
llm_middleware_name=opts.llm_middleware_name,
|
||||
llm_middleware_name=GlobalConfig.get().llm_middleware_name,
|
||||
analytics_tracking_code=analytics_tracking_code,
|
||||
info_html=info_html,
|
||||
default_model=default_model_info['model'],
|
||||
default_active_gen_workers=default_model_info['processing'],
|
||||
default_proompters_in_queue=default_model_info['queued'],
|
||||
current_model=opts.manual_model_name if opts.manual_model_name else None, # else running_model,
|
||||
current_model=GlobalConfig.get().manual_model_name if GlobalConfig.get().manual_model_name else None, # else running_model,
|
||||
client_api=f'https://{base_client_api}',
|
||||
ws_client_api=f'wss://{base_client_api}/v1/stream' if opts.enable_streaming else 'disabled',
|
||||
ws_client_api=f'wss://{base_client_api}/v1/stream' if GlobalConfig.get().enable_streaming else 'disabled',
|
||||
default_estimated_wait=default_estimated_wait_sec,
|
||||
mode_name=mode_ui_names[opts.frontend_api_mode][0],
|
||||
api_input_textbox=mode_ui_names[opts.frontend_api_mode][1],
|
||||
streaming_input_textbox=mode_ui_names[opts.frontend_api_mode][2],
|
||||
mode_name=mode_ui_names[GlobalConfig.get().frontend_api_mode][0],
|
||||
api_input_textbox=mode_ui_names[GlobalConfig.get().frontend_api_mode][1],
|
||||
streaming_input_textbox=mode_ui_names[GlobalConfig.get().frontend_api_mode][2],
|
||||
default_context_size=default_model_info['context_size'],
|
||||
stats_json=json.dumps(stats, indent=4, ensure_ascii=False),
|
||||
extra_info=mode_info,
|
||||
openai_client_api=f'https://{base_client_api}/openai/v1' if opts.enable_openi_compatible_backend else 'disabled',
|
||||
expose_openai_system_prompt=opts.expose_openai_system_prompt,
|
||||
enable_streaming=opts.enable_streaming,
|
||||
openai_client_api=f'https://{base_client_api}/openai/v1' if GlobalConfig.get().enable_openi_compatible_backend else 'disabled',
|
||||
expose_openai_system_prompt=GlobalConfig.get().expose_openai_system_prompt,
|
||||
enable_streaming=GlobalConfig.get().enable_streaming,
|
||||
model_choices=model_choices,
|
||||
proompters_5_min=stats['stats']['proompters']['5_min'],
|
||||
proompters_24_hrs=stats['stats']['proompters']['24_hrs'],
|
||||
|
|
Reference in New Issue