Merge cluster to master #3
|
@ -1,10 +1,33 @@
|
|||
import numpy as np
|
||||
|
||||
from llm_server import opts
|
||||
from llm_server.cluster.cluster_config import cluster_config
|
||||
from llm_server.cluster.redis_cycle import add_backend_cycler, redis_cycle
|
||||
from llm_server.cluster.cluster_config import cluster_config, get_a_cluster_backend
|
||||
from llm_server.cluster.stores import redis_running_models
|
||||
from llm_server.custom_redis import redis
|
||||
from llm_server.llm.generator import generator
|
||||
from llm_server.llm.info import get_info
|
||||
from llm_server.routes.helpers.model import estimate_model_size
|
||||
from llm_server.routes.queue import priority_queue
|
||||
from llm_server.routes.stats import get_active_gen_workers_model, calculate_wait_time
|
||||
|
||||
|
||||
def get_backends_from_model(model_name: str):
|
||||
return [x.decode('utf-8') for x in redis_running_models.smembers(model_name)]
|
||||
|
||||
|
||||
def get_running_models():
|
||||
return redis_running_models.keys()
|
||||
|
||||
|
||||
def purge_backend_from_running_models(backend_url: str):
|
||||
keys = redis_running_models.keys()
|
||||
pipeline = redis_running_models.pipeline()
|
||||
for model in keys:
|
||||
pipeline.srem(model, backend_url)
|
||||
pipeline.execute()
|
||||
|
||||
|
||||
def is_valid_model(model_name: str):
|
||||
return redis_running_models.exists(model_name)
|
||||
|
||||
|
||||
def test_backend(backend_url: str, test_prompt: bool = False):
|
||||
|
@ -28,81 +51,64 @@ def test_backend(backend_url: str, test_prompt: bool = False):
|
|||
return True, i
|
||||
|
||||
|
||||
def get_backends():
|
||||
backends = cluster_config.all()
|
||||
result = {}
|
||||
for k, v in backends.items():
|
||||
b = cluster_config.get_backend(k)
|
||||
status = b.get('online', False)
|
||||
priority = b['priority']
|
||||
result[k] = {'status': status, 'priority': priority}
|
||||
|
||||
if not opts.prioritize_by_size:
|
||||
online_backends = sorted(
|
||||
((url, info) for url, info in backends.items() if info['online']),
|
||||
key=lambda kv: -kv[1]['priority'],
|
||||
reverse=True
|
||||
)
|
||||
|
||||
def get_model_choices(regen: bool = False):
|
||||
if not regen:
|
||||
c = redis.getp('model_choices')
|
||||
if c:
|
||||
return c
|
||||
|
||||
base_client_api = redis.get('base_client_api', dtype=str)
|
||||
running_models = get_running_models()
|
||||
model_choices = {}
|
||||
for model in running_models:
|
||||
b = get_backends_from_model(model)
|
||||
|
||||
context_size = []
|
||||
avg_gen_per_worker = []
|
||||
concurrent_gens = 0
|
||||
for backend_url in b:
|
||||
backend_info = cluster_config.get_backend(backend_url)
|
||||
if backend_info.get('model_config'):
|
||||
context_size.append(backend_info['model_config']['max_position_embeddings'])
|
||||
if backend_info.get('average_generation_elapsed_sec'):
|
||||
avg_gen_per_worker.append(backend_info['average_generation_elapsed_sec'])
|
||||
concurrent_gens += backend_info['concurrent_gens']
|
||||
|
||||
active_gen_workers = get_active_gen_workers_model(model)
|
||||
proompters_in_queue = priority_queue.len(model)
|
||||
|
||||
if len(avg_gen_per_worker):
|
||||
average_generation_elapsed_sec = np.average(avg_gen_per_worker)
|
||||
else:
|
||||
online_backends = sorted(
|
||||
((url, info) for url, info in backends.items() if info['online']),
|
||||
key=lambda kv: estimate_model_size(kv[1]['model_config']),
|
||||
reverse=True
|
||||
)
|
||||
offline_backends = sorted(
|
||||
((url, info) for url, info in backends.items() if not info['online']),
|
||||
key=lambda kv: -kv[1]['priority'],
|
||||
reverse=True
|
||||
)
|
||||
return [url for url, info in online_backends], [url for url, info in offline_backends]
|
||||
average_generation_elapsed_sec = 0
|
||||
estimated_wait_sec = calculate_wait_time(average_generation_elapsed_sec, proompters_in_queue, concurrent_gens, active_gen_workers)
|
||||
|
||||
model_choices[model] = {
|
||||
'model': model,
|
||||
'client_api': f'https://{base_client_api}/{model}',
|
||||
'ws_client_api': f'wss://{base_client_api}/{model}/v1/stream' if opts.enable_streaming else None,
|
||||
'openai_client_api': f'https://{base_client_api}/openai/{model}' if opts.enable_openi_compatible_backend else 'disabled',
|
||||
'backend_count': len(b),
|
||||
'estimated_wait': estimated_wait_sec,
|
||||
'queued': proompters_in_queue,
|
||||
'processing': active_gen_workers,
|
||||
'avg_generation_time': average_generation_elapsed_sec,
|
||||
'concurrent_gens': concurrent_gens
|
||||
}
|
||||
|
||||
def get_a_cluster_backend(model=None):
|
||||
"""
|
||||
Get a backend from Redis. If there are no online backends, return None.
|
||||
If `model` is not supplied, we will pick one ourself.
|
||||
"""
|
||||
if model:
|
||||
# First, determine if there are multiple backends hosting the same model.
|
||||
backends_hosting_model = [i.decode('utf-8') for i in redis_running_models.smembers(model)]
|
||||
if len(context_size):
|
||||
model_choices[model]['context_size'] = min(context_size)
|
||||
|
||||
# If so, create an iterator for those backends
|
||||
if len(backends_hosting_model):
|
||||
add_backend_cycler(model, backends_hosting_model)
|
||||
cycled = redis_cycle(model)
|
||||
if len(cycled):
|
||||
return cycled[0]
|
||||
else:
|
||||
# No backend hosting that model
|
||||
return None
|
||||
else:
|
||||
online, _ = get_backends()
|
||||
if len(online):
|
||||
return online[0]
|
||||
# Python wants to sort lowercase vs. uppercase letters differently.
|
||||
model_choices = dict(sorted(model_choices.items(), key=lambda item: item[0].upper()))
|
||||
|
||||
default_backend_url = get_a_cluster_backend()
|
||||
default_backend_info = cluster_config.get_backend(default_backend_url)
|
||||
if not default_backend_info.get('model'):
|
||||
return None, None
|
||||
default_model = default_backend_info['model']
|
||||
|
||||
def get_backends_from_model(model_name: str):
|
||||
return [x.decode('utf-8') for x in redis_running_models.smembers(model_name)]
|
||||
|
||||
|
||||
# def verify_context_size(model_name:str):
|
||||
# b = get_backends_from_model(model_name)
|
||||
# for backend_url in b:
|
||||
# backend_info = cluster_config.get_backend(backend_url)
|
||||
# backend_info.get()
|
||||
|
||||
|
||||
def get_running_models():
|
||||
return redis_running_models.keys()
|
||||
|
||||
|
||||
def purge_backend_from_running_models(backend_url: str):
|
||||
keys = redis_running_models.keys()
|
||||
pipeline = redis_running_models.pipeline()
|
||||
for model in keys:
|
||||
pipeline.srem(model, backend_url)
|
||||
pipeline.execute()
|
||||
|
||||
|
||||
def is_valid_model(model_name: str):
|
||||
return redis_running_models.exists(model_name)
|
||||
redis.setp('model_choices', (model_choices, default_model))
|
||||
return model_choices, default_model
|
||||
|
|
|
@ -1,3 +1,60 @@
|
|||
from llm_server import opts
|
||||
from llm_server.cluster.redis_config_cache import RedisClusterStore
|
||||
from llm_server.cluster.redis_cycle import add_backend_cycler, redis_cycle
|
||||
from llm_server.cluster.stores import redis_running_models
|
||||
from llm_server.routes.helpers.model import estimate_model_size
|
||||
|
||||
cluster_config = RedisClusterStore('cluster_config')
|
||||
|
||||
|
||||
def get_backends():
|
||||
backends = cluster_config.all()
|
||||
result = {}
|
||||
for k, v in backends.items():
|
||||
b = cluster_config.get_backend(k)
|
||||
status = b.get('online', False)
|
||||
priority = b['priority']
|
||||
result[k] = {'status': status, 'priority': priority}
|
||||
|
||||
if not opts.prioritize_by_size:
|
||||
online_backends = sorted(
|
||||
((url, info) for url, info in backends.items() if info['online']),
|
||||
key=lambda kv: -kv[1]['priority'],
|
||||
reverse=True
|
||||
)
|
||||
else:
|
||||
online_backends = sorted(
|
||||
((url, info) for url, info in backends.items() if info['online']),
|
||||
key=lambda kv: estimate_model_size(kv[1]['model_config']),
|
||||
reverse=True
|
||||
)
|
||||
offline_backends = sorted(
|
||||
((url, info) for url, info in backends.items() if not info['online']),
|
||||
key=lambda kv: -kv[1]['priority'],
|
||||
reverse=True
|
||||
)
|
||||
return [url for url, info in online_backends], [url for url, info in offline_backends]
|
||||
|
||||
|
||||
def get_a_cluster_backend(model=None):
|
||||
"""
|
||||
Get a backend from Redis. If there are no online backends, return None.
|
||||
If `model` is not supplied, we will pick one ourself.
|
||||
"""
|
||||
if model:
|
||||
# First, determine if there are multiple backends hosting the same model.
|
||||
backends_hosting_model = [i.decode('utf-8') for i in redis_running_models.smembers(model)]
|
||||
|
||||
# If so, create an iterator for those backends
|
||||
if len(backends_hosting_model):
|
||||
add_backend_cycler(model, backends_hosting_model)
|
||||
cycled = redis_cycle(model)
|
||||
if len(cycled):
|
||||
return cycled[0]
|
||||
else:
|
||||
# No backend hosting that model
|
||||
return None
|
||||
else:
|
||||
online, _ = get_backends()
|
||||
if len(online):
|
||||
return online[0]
|
||||
|
|
|
@ -1,70 +1 @@
|
|||
import numpy as np
|
||||
|
||||
from llm_server import opts
|
||||
from llm_server.cluster.backend import get_a_cluster_backend, get_backends_from_model, get_running_models
|
||||
from llm_server.cluster.cluster_config import cluster_config
|
||||
from llm_server.custom_redis import redis
|
||||
from llm_server.routes.queue import priority_queue
|
||||
from llm_server.routes.stats import calculate_wait_time, get_active_gen_workers_model
|
||||
|
||||
|
||||
# TODO: give this a better name!
|
||||
def get_model_choices(regen: bool = False):
|
||||
if not regen:
|
||||
c = redis.getp('model_choices')
|
||||
if c:
|
||||
return c
|
||||
|
||||
base_client_api = redis.get('base_client_api', dtype=str)
|
||||
running_models = get_running_models()
|
||||
model_choices = {}
|
||||
for model in running_models:
|
||||
b = get_backends_from_model(model)
|
||||
|
||||
context_size = []
|
||||
avg_gen_per_worker = []
|
||||
concurrent_gens = 0
|
||||
for backend_url in b:
|
||||
backend_info = cluster_config.get_backend(backend_url)
|
||||
if backend_info.get('model_config'):
|
||||
context_size.append(backend_info['model_config']['max_position_embeddings'])
|
||||
if backend_info.get('average_generation_elapsed_sec'):
|
||||
avg_gen_per_worker.append(backend_info['average_generation_elapsed_sec'])
|
||||
concurrent_gens += backend_info['concurrent_gens']
|
||||
|
||||
active_gen_workers = get_active_gen_workers_model(model)
|
||||
proompters_in_queue = priority_queue.len(model)
|
||||
|
||||
if len(avg_gen_per_worker):
|
||||
average_generation_elapsed_sec = np.average(avg_gen_per_worker)
|
||||
else:
|
||||
average_generation_elapsed_sec = 0
|
||||
estimated_wait_sec = calculate_wait_time(average_generation_elapsed_sec, proompters_in_queue, concurrent_gens, active_gen_workers)
|
||||
|
||||
model_choices[model] = {
|
||||
'model': model,
|
||||
'client_api': f'https://{base_client_api}/{model}',
|
||||
'ws_client_api': f'wss://{base_client_api}/{model}/v1/stream' if opts.enable_streaming else None,
|
||||
'openai_client_api': f'https://{base_client_api}/openai/{model}' if opts.enable_openi_compatible_backend else 'disabled',
|
||||
'backend_count': len(b),
|
||||
'estimated_wait': estimated_wait_sec,
|
||||
'queued': proompters_in_queue,
|
||||
'processing': active_gen_workers,
|
||||
'avg_generation_time': average_generation_elapsed_sec,
|
||||
'concurrent_gens': concurrent_gens
|
||||
}
|
||||
|
||||
if len(context_size):
|
||||
model_choices[model]['context_size'] = min(context_size)
|
||||
|
||||
# Python wants to sort lowercase vs. uppercase letters differently.
|
||||
model_choices = dict(sorted(model_choices.items(), key=lambda item: item[0].upper()))
|
||||
|
||||
default_backend_url = get_a_cluster_backend()
|
||||
default_backend_info = cluster_config.get_backend(default_backend_url)
|
||||
if not default_backend_info.get('model'):
|
||||
return None, None
|
||||
default_model = default_backend_info['model']
|
||||
|
||||
redis.setp('model_choices', (model_choices, default_model))
|
||||
return model_choices, default_model
|
||||
|
|
|
@ -45,5 +45,16 @@ class RedisClusterStore:
|
|||
else:
|
||||
return {}
|
||||
|
||||
# def get(self, name: str):
|
||||
# return self.all().get(name)
|
||||
def validate_backend(self, backend_url: str):
|
||||
"""
|
||||
Returns the backend URL that was given, or a new one if that was offline.
|
||||
:param backend_url:
|
||||
:return:
|
||||
"""
|
||||
backend_info = self.get_backend(backend_url)
|
||||
if not backend_info['online']:
|
||||
old = backend_url
|
||||
backend_url = get_a_cluster_backend()
|
||||
print(f'Backend {old} offline. Request was redirected to {backend_url}')
|
||||
return backend_url
|
||||
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
import time
|
||||
from threading import Thread
|
||||
|
||||
from llm_server.cluster.backend import test_backend
|
||||
from llm_server.cluster.cluster_config import cluster_config
|
||||
from llm_server.cluster.backend import test_backend
|
||||
from llm_server.cluster.stores import redis_running_models
|
||||
|
||||
|
||||
|
|
|
@ -4,7 +4,6 @@ import requests
|
|||
import tiktoken
|
||||
|
||||
from llm_server import opts
|
||||
from llm_server.cluster.backend import get_a_cluster_backend
|
||||
from llm_server.cluster.cluster_config import cluster_config
|
||||
|
||||
|
||||
|
@ -13,15 +12,9 @@ def tokenize(prompt: str, backend_url: str) -> int:
|
|||
assert isinstance(prompt, str)
|
||||
assert isinstance(backend_url, str)
|
||||
|
||||
# TODO: put this in a shared function
|
||||
# The backend could have died between when the request was
|
||||
# submitted and now, so let's double check it's still online.
|
||||
backend_info = cluster_config.get_backend(backend_url)
|
||||
if not backend_info['online']:
|
||||
old = backend_url
|
||||
backend_url = get_a_cluster_backend()
|
||||
print(f'Backend {old} offline. Request was redirected to {backend_url}')
|
||||
del old # gc
|
||||
backend_url = cluster_config.validate_backend(backend_url)
|
||||
|
||||
if not prompt:
|
||||
# The tokenizers have issues when the prompt is None.
|
||||
|
|
|
@ -7,8 +7,7 @@ from llm_server.custom_redis import ONE_MONTH_SECONDS, flask_cache, redis
|
|||
from . import openai_bp
|
||||
from ..stats import server_start_time
|
||||
from ... import opts
|
||||
from ...cluster.backend import get_a_cluster_backend
|
||||
from ...cluster.cluster_config import cluster_config
|
||||
from ...cluster.cluster_config import cluster_config, get_a_cluster_backend
|
||||
from ...helpers import jsonify_pretty
|
||||
from ...llm.openai.transform import generate_oai_string
|
||||
|
||||
|
|
|
@ -9,7 +9,7 @@ import flask
|
|||
from flask import Response, jsonify, make_response
|
||||
|
||||
from llm_server import opts
|
||||
from llm_server.cluster.model_choices import get_model_choices
|
||||
from llm_server.cluster.backend import get_model_choices
|
||||
from llm_server.custom_redis import redis
|
||||
from llm_server.database.database import is_api_key_moderated, log_prompt
|
||||
from llm_server.llm import get_token_count
|
||||
|
|
|
@ -5,8 +5,7 @@ import flask
|
|||
from flask import Response, request
|
||||
|
||||
from llm_server import opts
|
||||
from llm_server.cluster.backend import get_a_cluster_backend
|
||||
from llm_server.cluster.cluster_config import cluster_config
|
||||
from llm_server.cluster.cluster_config import cluster_config, get_a_cluster_backend
|
||||
from llm_server.custom_redis import redis
|
||||
from llm_server.database.database import get_token_ratelimit, log_prompt
|
||||
from llm_server.helpers import auto_set_base_client_api
|
||||
|
|
|
@ -3,7 +3,7 @@ from datetime import datetime
|
|||
|
||||
from llm_server import opts
|
||||
from llm_server.cluster.cluster_config import cluster_config
|
||||
from llm_server.cluster.model_choices import get_model_choices
|
||||
from llm_server.cluster.backend import get_model_choices
|
||||
from llm_server.custom_redis import redis
|
||||
from llm_server.database.database import get_distinct_ips_24h, sum_column
|
||||
from llm_server.helpers import deep_sort
|
||||
|
|
|
@ -5,8 +5,8 @@ from flask import jsonify, request
|
|||
from llm_server.custom_redis import flask_cache
|
||||
from . import bp
|
||||
from ... import opts
|
||||
from ...cluster.backend import get_a_cluster_backend, get_backends_from_model, is_valid_model
|
||||
from ...cluster.cluster_config import cluster_config
|
||||
from ...cluster.backend import get_backends_from_model, is_valid_model
|
||||
from ...cluster.cluster_config import cluster_config, get_a_cluster_backend
|
||||
|
||||
|
||||
@bp.route('/v1/model', methods=['GET'])
|
||||
|
|
|
@ -4,8 +4,7 @@ from llm_server.custom_redis import flask_cache
|
|||
from . import bp
|
||||
from .generate_stats import generate_stats
|
||||
from ..auth import requires_auth
|
||||
from ...cluster.backend import get_backends
|
||||
from ...cluster.cluster_config import cluster_config
|
||||
from ...cluster.cluster_config import cluster_config, get_backends
|
||||
from ...helpers import jsonify_pretty
|
||||
|
||||
|
||||
|
|
|
@ -1,8 +1,7 @@
|
|||
import threading
|
||||
import time
|
||||
|
||||
from llm_server.cluster.backend import get_a_cluster_backend
|
||||
from llm_server.cluster.cluster_config import cluster_config
|
||||
from llm_server.cluster.cluster_config import cluster_config, get_a_cluster_backend
|
||||
from llm_server.custom_redis import redis
|
||||
from llm_server.llm.generator import generator
|
||||
from llm_server.routes.queue import DataEvent, decr_active_workers, decrement_ip_count, incr_active_workers, increment_ip_count, priority_queue
|
||||
|
|
|
@ -3,8 +3,7 @@ import time
|
|||
import requests
|
||||
|
||||
from llm_server import opts
|
||||
from llm_server.cluster.backend import get_backends
|
||||
from llm_server.cluster.cluster_config import cluster_config
|
||||
from llm_server.cluster.cluster_config import cluster_config, get_backends
|
||||
from llm_server.custom_redis import redis
|
||||
from llm_server.database.database import weighted_average_column_for_model
|
||||
from llm_server.llm.info import get_info
|
||||
|
|
|
@ -13,7 +13,7 @@ import simplejson as json
|
|||
from flask import Flask, jsonify, render_template, request
|
||||
|
||||
from llm_server.cluster.cluster_config import cluster_config
|
||||
from llm_server.cluster.model_choices import get_model_choices
|
||||
from llm_server.cluster.backend import get_model_choices
|
||||
from llm_server.config.config import mode_ui_names
|
||||
from llm_server.config.load import load_config
|
||||
from llm_server.database.conn import database
|
||||
|
|
Reference in New Issue