Merge cluster to master #3

Merged
cyberes merged 163 commits from cluster into master 2023-10-27 19:19:22 -06:00
3 changed files with 63 additions and 34 deletions
Showing only changes of commit 5f7bf4faca - Show all commits

View File

@ -67,7 +67,6 @@ class OpenAIRequestHandler(RequestHandler):
llm_request = {**self.parameters, 'prompt': self.prompt}
(success, _, _, _), (backend_response, backend_response_status_code) = self.generate_response(llm_request)
model = self.request_json_body.get('model')
if success:
@ -98,6 +97,7 @@ class OpenAIRequestHandler(RequestHandler):
return response, 429
def handle_error(self, error_msg: str, error_type: str = 'error') -> Tuple[flask.Response, int]:
print(error_msg)
return jsonify({
"error": {
"message": "Invalid request, check your parameters and try again.",

View File

@ -0,0 +1,62 @@
import os
import sys
import warnings
import gradio as gr
import openai
warnings.filterwarnings("ignore")
API_BASE = os.getenv('API_BASE')
if not API_BASE:
print('Must set the secret variable API_BASE to your https://your-site/api/openai/v1')
sys.exit(1)
# A system prompt can be injected into the very first spot in the context.
# If the user sends a message that contains the CONTEXT_TRIGGER_PHRASE,
# the content in CONTEXT_TRIGGER_INJECTION will be injected.
# Setting CONTEXT_TRIGGER_PHRASE will also add it to the selectable examples.
CONTEXT_TRIGGER_PHRASE = os.getenv('CONTEXT_TRIGGER_PHRASE')
CONTEXT_TRIGGER_INJECTION = os.getenv('CONTEXT_TRIGGER_INJECTION')
openai.api_key = 'null'
openai.api_base = API_BASE
def stream_response(prompt, history):
messages = []
do_injection = False
for human, assistant in history:
messages.append({'role': 'user', 'content': str(human)})
messages.append({'role': 'assistant', 'content': str(assistant)})
if CONTEXT_TRIGGER_INJECTION and CONTEXT_TRIGGER_PHRASE in human:
do_injection = True
messages.append({'role': 'user', 'content': prompt})
if do_injection or (CONTEXT_TRIGGER_INJECTION and CONTEXT_TRIGGER_PHRASE in prompt):
messages.insert(0, {'role': 'system', 'content': CONTEXT_TRIGGER_INJECTION})
try:
response = openai.ChatCompletion.create(
model='0',
messages=messages,
temperature=0,
max_tokens=300,
stream=True
)
except Exception:
raise gr.Error("Failed to reach inference endpoint.")
message = ''
for chunk in response:
if len(chunk['choices'][0]['delta']) != 0:
message += chunk['choices'][0]['delta']['content']
yield message
examples = ["hello", "hola", "merhaba"]
if CONTEXT_TRIGGER_PHRASE:
examples.insert(0, CONTEXT_TRIGGER_PHRASE)
gr.ChatInterface(stream_response, examples=examples, title="Chatbot Demo", analytics_enabled=False, cache_examples=False, css='#component-0{height:100%!important}').queue(concurrency_count=3).launch()

View File

@ -1,33 +0,0 @@
import warnings
import gradio as gr
import openai
warnings.filterwarnings("ignore")
openai.api_key = 'null'
openai.api_base = 'http://localhost:5000/api/openai/v1'
def stream_response(prompt, history):
messages = []
for x in history:
messages.append({'role': 'user', 'content': x[0]})
messages.append({'role': 'assistant', 'content': x[1]})
messages.append({'role': 'user', 'content': prompt})
response = openai.ChatCompletion.create(
model='0',
messages=messages,
temperature=0,
max_tokens=300,
stream=True
)
message = ''
for chunk in response:
message += chunk['choices'][0]['delta']['content']
yield message
gr.ChatInterface(stream_response, examples=["hello", "hola", "merhaba"], title="Chatbot Demo", analytics_enabled=False, cache_examples=False, css='#component-0{height:100%!important}').queue().launch()