Merge cluster to master #3
|
@ -67,7 +67,6 @@ class OpenAIRequestHandler(RequestHandler):
|
|||
|
||||
llm_request = {**self.parameters, 'prompt': self.prompt}
|
||||
(success, _, _, _), (backend_response, backend_response_status_code) = self.generate_response(llm_request)
|
||||
|
||||
model = self.request_json_body.get('model')
|
||||
|
||||
if success:
|
||||
|
@ -98,6 +97,7 @@ class OpenAIRequestHandler(RequestHandler):
|
|||
return response, 429
|
||||
|
||||
def handle_error(self, error_msg: str, error_type: str = 'error') -> Tuple[flask.Response, int]:
|
||||
print(error_msg)
|
||||
return jsonify({
|
||||
"error": {
|
||||
"message": "Invalid request, check your parameters and try again.",
|
||||
|
|
|
@ -0,0 +1,62 @@
|
|||
import os
|
||||
import sys
|
||||
import warnings
|
||||
|
||||
import gradio as gr
|
||||
import openai
|
||||
|
||||
warnings.filterwarnings("ignore")
|
||||
|
||||
API_BASE = os.getenv('API_BASE')
|
||||
if not API_BASE:
|
||||
print('Must set the secret variable API_BASE to your https://your-site/api/openai/v1')
|
||||
sys.exit(1)
|
||||
|
||||
# A system prompt can be injected into the very first spot in the context.
|
||||
# If the user sends a message that contains the CONTEXT_TRIGGER_PHRASE,
|
||||
# the content in CONTEXT_TRIGGER_INJECTION will be injected.
|
||||
# Setting CONTEXT_TRIGGER_PHRASE will also add it to the selectable examples.
|
||||
CONTEXT_TRIGGER_PHRASE = os.getenv('CONTEXT_TRIGGER_PHRASE')
|
||||
CONTEXT_TRIGGER_INJECTION = os.getenv('CONTEXT_TRIGGER_INJECTION')
|
||||
|
||||
openai.api_key = 'null'
|
||||
openai.api_base = API_BASE
|
||||
|
||||
|
||||
def stream_response(prompt, history):
|
||||
messages = []
|
||||
do_injection = False
|
||||
for human, assistant in history:
|
||||
messages.append({'role': 'user', 'content': str(human)})
|
||||
messages.append({'role': 'assistant', 'content': str(assistant)})
|
||||
|
||||
if CONTEXT_TRIGGER_INJECTION and CONTEXT_TRIGGER_PHRASE in human:
|
||||
do_injection = True
|
||||
messages.append({'role': 'user', 'content': prompt})
|
||||
|
||||
if do_injection or (CONTEXT_TRIGGER_INJECTION and CONTEXT_TRIGGER_PHRASE in prompt):
|
||||
messages.insert(0, {'role': 'system', 'content': CONTEXT_TRIGGER_INJECTION})
|
||||
|
||||
try:
|
||||
response = openai.ChatCompletion.create(
|
||||
model='0',
|
||||
messages=messages,
|
||||
temperature=0,
|
||||
max_tokens=300,
|
||||
stream=True
|
||||
)
|
||||
except Exception:
|
||||
raise gr.Error("Failed to reach inference endpoint.")
|
||||
|
||||
message = ''
|
||||
for chunk in response:
|
||||
if len(chunk['choices'][0]['delta']) != 0:
|
||||
message += chunk['choices'][0]['delta']['content']
|
||||
yield message
|
||||
|
||||
|
||||
examples = ["hello", "hola", "merhaba"]
|
||||
if CONTEXT_TRIGGER_PHRASE:
|
||||
examples.insert(0, CONTEXT_TRIGGER_PHRASE)
|
||||
|
||||
gr.ChatInterface(stream_response, examples=examples, title="Chatbot Demo", analytics_enabled=False, cache_examples=False, css='#component-0{height:100%!important}').queue(concurrency_count=3).launch()
|
|
@ -1,33 +0,0 @@
|
|||
import warnings
|
||||
|
||||
import gradio as gr
|
||||
import openai
|
||||
|
||||
warnings.filterwarnings("ignore")
|
||||
|
||||
openai.api_key = 'null'
|
||||
openai.api_base = 'http://localhost:5000/api/openai/v1'
|
||||
|
||||
|
||||
def stream_response(prompt, history):
|
||||
messages = []
|
||||
for x in history:
|
||||
messages.append({'role': 'user', 'content': x[0]})
|
||||
messages.append({'role': 'assistant', 'content': x[1]})
|
||||
messages.append({'role': 'user', 'content': prompt})
|
||||
|
||||
response = openai.ChatCompletion.create(
|
||||
model='0',
|
||||
messages=messages,
|
||||
temperature=0,
|
||||
max_tokens=300,
|
||||
stream=True
|
||||
)
|
||||
|
||||
message = ''
|
||||
for chunk in response:
|
||||
message += chunk['choices'][0]['delta']['content']
|
||||
yield message
|
||||
|
||||
|
||||
gr.ChatInterface(stream_response, examples=["hello", "hola", "merhaba"], title="Chatbot Demo", analytics_enabled=False, cache_examples=False, css='#component-0{height:100%!important}').queue().launch()
|
Reference in New Issue