import time from llm_server import opts from llm_server.cluster.backend import get_a_cluster_backend, get_backends from llm_server.cluster.cluster_config import cluster_config from llm_server.custom_redis import redis from llm_server.database.database import weighted_average_column_for_model from llm_server.llm.info import get_running_model def main_background_thread(): while True: online, offline = get_backends() for backend_url in online: backend_info = cluster_config.get_backend(backend_url) backend_mode = backend_info['mode'] running_model, err = get_running_model(backend_url, backend_mode) if err: continue average_generation_elapsed_sec, average_output_tokens, estimated_avg_tps = calc_stats_for_backend(backend_url, running_model, backend_mode) if average_generation_elapsed_sec: # returns None on exception cluster_config.set_backend_value(backend_url, 'average_generation_elapsed_sec', average_generation_elapsed_sec) if average_output_tokens: cluster_config.set_backend_value(backend_url, 'average_output_tokens', average_output_tokens) if average_generation_elapsed_sec and average_output_tokens: cluster_config.set_backend_value(backend_url, 'estimated_avg_tps', estimated_avg_tps) default_backend_url = get_a_cluster_backend() default_backend_info = cluster_config.get_backend(default_backend_url) default_backend_mode = default_backend_info['mode'] default_running_model, err = get_running_model(default_backend_url, default_backend_mode) if err: continue default_average_generation_elapsed_sec, default_average_output_tokens, default_estimated_avg_tps = calc_stats_for_backend(default_running_model, default_running_model, default_backend_mode) if default_average_generation_elapsed_sec: redis.set('average_generation_elapsed_sec', default_average_generation_elapsed_sec) if default_average_output_tokens: redis.set('average_output_tokens', default_average_output_tokens) if default_average_generation_elapsed_sec and default_average_output_tokens: redis.set('estimated_avg_tps', default_estimated_avg_tps) time.sleep(30) def calc_stats_for_backend(backend_url, running_model, backend_mode): # exclude_zeros=True filters out rows where an error message was returned. Previously, if there was an error, 0 # was entered into the column. The new code enters null instead but we need to be backwards compatible for now. average_generation_elapsed_sec = weighted_average_column_for_model('prompts', 'generation_time', running_model, backend_mode, backend_url, exclude_zeros=True, include_system_tokens=opts.include_system_tokens_in_stats) or 0 average_output_tokens = weighted_average_column_for_model('prompts', 'response_tokens', running_model, backend_mode, backend_url, exclude_zeros=True, include_system_tokens=opts.include_system_tokens_in_stats) or 0 estimated_avg_tps = round(average_output_tokens / average_generation_elapsed_sec, 2) if average_generation_elapsed_sec > 0 else 0 # Avoid division by zero return average_generation_elapsed_sec, average_output_tokens, estimated_avg_tps