This repository has been archived on 2024-10-27. You can view files and clone it, but cannot push or open issues or pull requests.
local-llm-server/server.py

204 lines
8.0 KiB
Python

try:
import gevent.monkey
gevent.monkey.patch_all()
except ImportError:
pass
import os
import sys
from pathlib import Path
import simplejson as json
from flask import Flask, jsonify, render_template, request, Response
import config
from llm_server import opts
from llm_server.cluster.backend import get_model_choices
from llm_server.cluster.cluster_config import cluster_config
from llm_server.config.config import mode_ui_names
from llm_server.config.load import load_config
from llm_server.custom_redis import flask_cache, redis
from llm_server.database.conn import database
from llm_server.database.create import create_db
from llm_server.helpers import auto_set_base_client_api
from llm_server.llm.vllm.info import vllm_info
from llm_server.pre_fork import server_startup
from llm_server.routes.openai import openai_bp, openai_model_bp
from llm_server.routes.server_error import handle_server_error
from llm_server.routes.v1 import bp
from llm_server.routes.v1.generate_stats import generate_stats
from llm_server.sock import init_wssocket
# TODO: seperate queue item timeout for websockets (make longer, like 5 minutes)
# TODO: return an `error: True`, error code, and error message rather than just a formatted message
# TODO: what happens when all backends are offline? What about the "online" key in the stats page?
# TODO: redis SCAN vs KEYS??
# TODO: is frequency penalty the same as ooba repetition penalty???
# TODO: make sure openai_moderation_enabled works on websockets, completions, and chat completions
# Lower priority
# TODO: if a backend is at its limit of concurrent requests, choose a different one
# TODO: make error messages consitient
# TODO: support logit_bias on OpenAI and Ooba endpoints.
# TODO: add a way to cancel VLLM gens. Maybe use websockets?
# TODO: validate openai_silent_trim works as expected and only when enabled
# TODO: rewrite config storage. Store in redis so we can reload it.
# TODO: set VLLM to stream ALL data using socket.io. If the socket disconnects, cancel generation.
# TODO: estiamted wait time needs to account for full concurrent_gens but the queue is less than concurrent_gens
# TODO: the estiamted wait time lags behind the stats
# TODO: simulate OpenAI error messages regardless of endpoint
# TODO: send extra headers when ratelimited?
# TODO: make sure log_prompt() is used everywhere, including errors and invalid requests
# TODO: unify logging thread in a function and use async/await instead
# TODO: move the netdata stats to a seperate part of the stats and have it set to the currently selected backend
# TODO: have VLLM reply with stats (TPS, generated token count, processing time)
# TODO: add config reloading via stored redis variables
# Done, but need to verify
# TODO: add more excluding to SYSTEM__ tokens
# TODO: return 200 when returning formatted sillytavern error
try:
import vllm
except ModuleNotFoundError as e:
print('Could not import vllm-gptq:', e)
print('Please see README.md for install instructions.')
sys.exit(1)
app = Flask(__name__)
# Fixes ConcurrentObjectUseError
# https://github.com/miguelgrinberg/simple-websocket/issues/24
app.config['SOCK_SERVER_OPTIONS'] = {'ping_interval': 25}
app.register_blueprint(bp, url_prefix='/api/')
app.register_blueprint(openai_bp, url_prefix='/api/openai/v1/')
app.register_blueprint(openai_model_bp, url_prefix='/api/openai/')
init_wssocket(app)
flask_cache.init_app(app)
flask_cache.clear()
script_path = os.path.dirname(os.path.realpath(__file__))
config_path_environ = os.getenv("CONFIG_PATH")
if config_path_environ:
config_path = config_path_environ
else:
config_path = Path(script_path, 'config', 'config.yml')
success, config, msg = load_config(config_path)
if not success:
print('Failed to load config:', msg)
sys.exit(1)
database.init_db(config['mysql']['host'], config['mysql']['username'], config['mysql']['password'], config['mysql']['database'])
create_db()
@app.route('/')
@app.route('/api')
@app.route('/api/openai')
@flask_cache.cached(timeout=10)
def home():
base_client_api = redis.get('base_client_api', dtype=str)
stats = generate_stats()
model_choices, default_model = get_model_choices()
if default_model:
if not model_choices.get(default_model):
return 'The server is still starting up. Please wait...'
default_model_info = model_choices[default_model]
if default_model_info['queued'] == 0 and default_model_info['queued'] >= default_model_info['concurrent_gens']:
# There will be a wait if the queue is empty but prompts are processing, but we don't
# know how long.
default_estimated_wait_sec = f"less than {int(default_model_info['estimated_wait'])} seconds"
else:
default_estimated_wait_sec = f"{int(default_model_info['estimated_wait'])} seconds"
else:
default_model_info = {
'model': 'OFFLINE',
'processing': '-',
'queued': '-',
'context_size': '-',
}
default_estimated_wait_sec = 'OFFLINE'
if len(config['analytics_tracking_code']):
analytics_tracking_code = f"<script>\n{config['analytics_tracking_code']}\n</script>"
else:
analytics_tracking_code = ''
if config['info_html']:
info_html = config['info_html']
else:
info_html = ''
mode_info = ''
for k, v in cluster_config.all().items():
if v['mode'] == 'vllm':
mode_info = vllm_info
break
return render_template('home.html',
llm_middleware_name=opts.llm_middleware_name,
analytics_tracking_code=analytics_tracking_code,
info_html=info_html,
default_model=default_model_info['model'],
default_active_gen_workers=default_model_info['processing'],
default_proompters_in_queue=default_model_info['queued'],
current_model=opts.manual_model_name if opts.manual_model_name else None, # else running_model,
client_api=f'https://{base_client_api}',
ws_client_api=f'wss://{base_client_api}/v1/stream' if opts.enable_streaming else 'disabled',
default_estimated_wait=default_estimated_wait_sec,
mode_name=mode_ui_names[opts.frontend_api_mode][0],
api_input_textbox=mode_ui_names[opts.frontend_api_mode][1],
streaming_input_textbox=mode_ui_names[opts.frontend_api_mode][2],
default_context_size=default_model_info['context_size'],
stats_json=json.dumps(stats, indent=4, ensure_ascii=False),
extra_info=mode_info,
openai_client_api=f'https://{base_client_api}/openai/v1' if opts.enable_openi_compatible_backend else 'disabled',
expose_openai_system_prompt=opts.expose_openai_system_prompt,
enable_streaming=opts.enable_streaming,
model_choices=model_choices,
proompters_5_min=stats['stats']['proompters']['5_min'],
proompters_24_hrs=stats['stats']['proompters']['24_hrs'],
)
@app.route('/robots.txt')
def robots():
# TODO: have config value to deny all
# TODO: https://developers.google.com/search/docs/crawling-indexing/robots/create-robots-txt
t = """User-agent: *
Allow: /"""
r = Response(t)
r.headers['Content-Type'] = 'text/plain'
return r
@app.route('/<first>')
@app.route('/<first>/<path:rest>')
def fallback(first=None, rest=None):
return jsonify({
'code': 404,
'msg': 'not found'
}), 404
@app.errorhandler(500)
def server_error(e):
return handle_server_error(e)
@app.before_request
def before_app_request():
auto_set_base_client_api(request)
if __name__ == "__main__":
server_startup(None)
print('FLASK MODE - Startup complete!')
app.run(host='0.0.0.0', threaded=False, processes=15)