This repository has been archived on 2024-10-27. You can view files and clone it, but cannot push or open issues or pull requests.
local-llm-server/llm_server/cluster/backend.py

118 lines
4.3 KiB
Python

import numpy as np
from llm_server import opts
from llm_server.cluster.cluster_config import cluster_config, get_a_cluster_backend
from llm_server.cluster.stores import redis_running_models
from llm_server.custom_redis import redis
from llm_server.llm.generator import generator
from llm_server.llm.info import get_info
from llm_server.llm.vllm.vllm_backend import VLLMBackend
from llm_server.routes.queue import priority_queue
from llm_server.routes.stats import calculate_wait_time, get_active_gen_workers_model
def get_backends_from_model(model_name: str):
return [x.decode('utf-8') for x in redis_running_models.smembers(model_name)]
def get_running_models():
return redis_running_models.keys()
def purge_backend_from_running_models(backend_url: str):
keys = redis_running_models.keys()
pipeline = redis_running_models.pipeline()
for model in keys:
pipeline.srem(model, backend_url)
pipeline.execute()
def is_valid_model(model_name: str):
return redis_running_models.exists(model_name)
def test_backend(backend_url: str, test_prompt: bool = False):
backend_info = cluster_config.get_backend(backend_url)
if test_prompt:
handler = VLLMBackend(backend_url)
parameters, _ = handler.get_parameters({
"stream": False,
"temperature": 0,
"max_new_tokens": 3,
})
data = {
'prompt': 'test prompt',
**parameters
}
try:
success, response, err = generator(data, backend_url, timeout=10)
if not success or not response or err:
return False, {}
except:
return False, {}
i = get_info(backend_url, backend_info['mode'])
if not i.get('model'):
return False, {}
return True, i
def get_model_choices(regen: bool = False):
if not regen:
c = redis.getp('model_choices')
if c:
return c
base_client_api = redis.get('base_client_api', dtype=str)
running_models = get_running_models()
model_choices = {}
for model in running_models:
b = get_backends_from_model(model)
context_size = []
avg_gen_per_worker = []
concurrent_gens = 0
for backend_url in b:
backend_info = cluster_config.get_backend(backend_url)
if backend_info.get('model_config'):
context_size.append(backend_info['model_config']['max_position_embeddings'])
if backend_info.get('average_generation_elapsed_sec'):
avg_gen_per_worker.append(backend_info['average_generation_elapsed_sec'])
concurrent_gens += backend_info['concurrent_gens']
active_gen_workers = get_active_gen_workers_model(model)
proompters_in_queue = priority_queue.len(model)
if len(avg_gen_per_worker):
average_generation_elapsed_sec = np.average(avg_gen_per_worker)
else:
average_generation_elapsed_sec = 0
estimated_wait_sec = calculate_wait_time(average_generation_elapsed_sec, proompters_in_queue, concurrent_gens, active_gen_workers)
model_choices[model] = {
'model': model,
'client_api': f'https://{base_client_api}/{model}',
'ws_client_api': f'wss://{base_client_api}/{model}/v1/stream' if opts.enable_streaming else None,
'openai_client_api': f'https://{base_client_api}/openai/{model}/v1' if opts.enable_openi_compatible_backend else 'disabled',
'backend_count': len(b),
'estimated_wait': estimated_wait_sec,
'queued': proompters_in_queue,
'processing': active_gen_workers,
'avg_generation_time': average_generation_elapsed_sec,
'concurrent_gens': concurrent_gens
}
if len(context_size):
model_choices[model]['context_size'] = min(context_size)
# Python wants to sort lowercase vs. uppercase letters differently.
model_choices = dict(sorted(model_choices.items(), key=lambda item: item[0].upper()))
default_backend_url = get_a_cluster_backend()
default_backend_info = cluster_config.get_backend(default_backend_url)
if not default_backend_info.get('model'):
return None, None
default_model = default_backend_info['model']
redis.setp('model_choices', (model_choices, default_model))
return model_choices, default_model