This repository has been archived on 2024-10-27. You can view files and clone it, but cannot push or open issues or pull requests.
local-llm-server/server.py

177 lines
6.8 KiB
Python

try:
import gevent.monkey
gevent.monkey.patch_all()
except ImportError:
pass
import os
import sys
from pathlib import Path
import simplejson as json
from flask import Flask, jsonify, render_template, request
from llm_server.cluster.cluster_config import cluster_config
from llm_server.cluster.model_choices import get_model_choices
from llm_server.config.config import mode_ui_names
from llm_server.config.load import load_config
from llm_server.database.conn import database
from llm_server.database.create import create_db
from llm_server.pre_fork import server_startup
from llm_server.routes.openai import openai_bp
from llm_server.routes.server_error import handle_server_error
from llm_server.routes.v1 import old_v1_bp
from llm_server.routes.v2 import bp
from llm_server.sock import init_socketio
# TODO: per-backend workers
# TODO: allow setting concurrent gens per-backend
# TODO: set the max tokens to that of the lowest backend
# TODO: implement RRD backend loadbalancer option
# TODO: have VLLM reject a request if it already has n == concurrent_gens running
# TODO: add a way to cancel VLLM gens. Maybe use websockets?
# TODO: use coloredlogs
# TODO: need to update opts. for workers
# TODO: add a healthcheck to VLLM
# TODO: allow choosing the model by the URL path
# TODO: have VLLM report context size, uptime
# Lower priority
# TODO: set VLLM to stream ALL data using socket.io. If the socket disconnects, cancel generation.
# TODO: estiamted wait time needs to account for full concurrent_gens but the queue is less than concurrent_gens
# TODO: the estiamted wait time lags behind the stats
# TODO: simulate OpenAI error messages regardless of endpoint
# TODO: send extra headers when ratelimited?
# TODO: make sure log_prompt() is used everywhere, including errors and invalid requests
# TODO: unify logging thread in a function and use async/await instead
# TODO: move the netdata stats to a seperate part of the stats and have it set to the currently selected backend
# TODO: have VLLM reply with stats (TPS, generated token count, processing time)
# TODO: add config reloading via stored redis variables
# Done, but need to verify
# TODO: add more excluding to SYSTEM__ tokens
# TODO: return 200 when returning formatted sillytavern error
try:
import vllm
except ModuleNotFoundError as e:
print('Could not import vllm-gptq:', e)
print('Please see README.md for install instructions.')
sys.exit(1)
import config
from llm_server import opts
from llm_server.helpers import auto_set_base_client_api
from llm_server.llm.vllm.info import vllm_info
from llm_server.custom_redis import flask_cache
from llm_server.llm import redis
from llm_server.routes.v2.generate_stats import generate_stats
app = Flask(__name__)
init_socketio(app)
app.register_blueprint(bp, url_prefix='/api/v2/')
app.register_blueprint(old_v1_bp, url_prefix='/api/v1/')
app.register_blueprint(openai_bp, url_prefix='/api/openai/v1/')
flask_cache.init_app(app)
flask_cache.clear()
script_path = os.path.dirname(os.path.realpath(__file__))
config_path_environ = os.getenv("CONFIG_PATH")
if config_path_environ:
config_path = config_path_environ
else:
config_path = Path(script_path, 'config', 'config.yml')
success, config, msg = load_config(config_path)
if not success:
print('Failed to load config:', msg)
sys.exit(1)
database.init_db(config['mysql']['host'], config['mysql']['username'], config['mysql']['password'], config['mysql']['database'])
create_db()
@app.route('/')
@app.route('/api')
@app.route('/api/openai')
@flask_cache.cached(timeout=10)
def home():
base_client_api = redis.get('base_client_api', dtype=str)
stats = generate_stats()
model_choices, default_backend_info = get_model_choices()
if default_backend_info['queued'] == 0 and default_backend_info['queued'] >= opts.concurrent_gens:
# There will be a wait if the queue is empty but prompts are processing, but we don't
# know how long.
default_estimated_wait_sec = f"less than {default_backend_info['estimated_wait']} seconds"
else:
default_estimated_wait_sec = f"{default_backend_info['estimated_wait']} seconds"
if len(config['analytics_tracking_code']):
analytics_tracking_code = f"<script>\n{config['analytics_tracking_code']}\n</script>"
else:
analytics_tracking_code = ''
if config['info_html']:
info_html = config['info_html']
else:
info_html = ''
mode_info = ''
for k, v in cluster_config.all().items():
if v['mode'] == 'vllm':
mode_info = vllm_info
break
return render_template('home.html',
llm_middleware_name=opts.llm_middleware_name,
analytics_tracking_code=analytics_tracking_code,
info_html=info_html,
default_model=default_backend_info['model'],
default_active_gen_workers=default_backend_info['processing'],
default_proompters_in_queue=default_backend_info['queued'],
current_model=opts.manual_model_name if opts.manual_model_name else None, # else running_model,
client_api=f'https://{base_client_api}/v2',
ws_client_api=f'wss://{base_client_api}/v2/stream' if opts.enable_streaming else 'disabled',
default_estimated_wait=default_estimated_wait_sec,
mode_name=mode_ui_names[opts.mode][0],
api_input_textbox=mode_ui_names[opts.mode][1],
streaming_input_textbox=mode_ui_names[opts.mode][2],
default_context_size=default_backend_info['context_size'],
stats_json=json.dumps(stats, indent=4, ensure_ascii=False),
extra_info=mode_info,
openai_client_api=f'https://{base_client_api}/openai/v1' if opts.enable_openi_compatible_backend else 'disabled',
expose_openai_system_prompt=opts.expose_openai_system_prompt,
enable_streaming=opts.enable_streaming,
model_choices=model_choices,
proompters_5_min=stats['stats']['proompters']['5_min'],
proompters_24_hrs=stats['stats']['proompters']['24_hrs'],
)
@app.route('/<first>')
@app.route('/<first>/<path:rest>')
def fallback(first=None, rest=None):
return jsonify({
'code': 404,
'msg': 'not found'
}), 404
@app.errorhandler(500)
def server_error(e):
return handle_server_error(e)
@app.before_request
def before_app_request():
auto_set_base_client_api(request)
if __name__ == "__main__":
server_startup(None)
print('FLASK MODE - Startup complete!')
app.run(host='0.0.0.0', threaded=False, processes=15)