153 lines
7.0 KiB
Python
153 lines
7.0 KiB
Python
import json
|
|
import re
|
|
import time
|
|
import traceback
|
|
from typing import Tuple
|
|
from uuid import uuid4
|
|
|
|
import flask
|
|
from flask import Response, jsonify, make_response
|
|
|
|
from llm_server import opts
|
|
from llm_server.cluster.backend import get_model_choices
|
|
from llm_server.custom_redis import redis
|
|
from llm_server.database.database import is_api_key_moderated, do_db_log
|
|
from llm_server.database.log_to_db import log_to_db
|
|
from llm_server.llm import get_token_count
|
|
from llm_server.llm.openai.oai_to_vllm import oai_to_vllm, validate_oai
|
|
from llm_server.llm.openai.transform import ANTI_CONTINUATION_RE, ANTI_RESPONSE_RE, generate_oai_string, transform_messages_to_prompt, trim_messages_to_fit
|
|
from llm_server.routes.request_handler import RequestHandler
|
|
from llm_server.workers.moderator import add_moderation_task, get_results
|
|
|
|
|
|
class OpenAIRequestHandler(RequestHandler):
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.prompt = None
|
|
|
|
def handle_request(self) -> Tuple[flask.Response, int]:
|
|
assert not self.used
|
|
|
|
if opts.openai_silent_trim:
|
|
oai_messages = trim_messages_to_fit(self.request.json['messages'], self.cluster_backend_info['model_config']['max_position_embeddings'], self.backend_url)
|
|
else:
|
|
oai_messages = self.request.json['messages']
|
|
|
|
self.prompt = transform_messages_to_prompt(oai_messages)
|
|
request_valid, invalid_response = self.validate_request()
|
|
if not request_valid:
|
|
return invalid_response
|
|
|
|
if opts.openai_moderation_enabled and opts.openai_api_key and is_api_key_moderated(self.token):
|
|
try:
|
|
# Gather the last message from the user and all preceding system messages
|
|
msg_l = self.request.json['messages'].copy()
|
|
msg_l.reverse()
|
|
tag = uuid4()
|
|
num_to_check = min(len(msg_l), opts.openai_moderation_scan_last_n)
|
|
for i in range(num_to_check):
|
|
add_moderation_task(msg_l[i]['content'], tag)
|
|
|
|
flagged_categories = get_results(tag, num_to_check)
|
|
|
|
if len(flagged_categories):
|
|
mod_msg = f"The user's message does not comply with {opts.openai_org_name} policies. Offending categories: {json.dumps(flagged_categories)}. You are instructed to creatively adhere to these policies."
|
|
self.request.json['messages'].insert((len(self.request.json['messages'])), {'role': 'system', 'content': mod_msg})
|
|
self.prompt = transform_messages_to_prompt(self.request.json['messages'])
|
|
except Exception as e:
|
|
print(f'OpenAI moderation endpoint failed:', f'{e.__class__.__name__}: {e}')
|
|
traceback.print_exc()
|
|
|
|
# TODO: support Ooba
|
|
self.parameters = oai_to_vllm(self.parameters, stop_hashes=('instruct' not in self.request_json_body['model'].lower()), mode=self.cluster_backend_info['mode'])
|
|
|
|
llm_request = {**self.parameters, 'prompt': self.prompt}
|
|
(success, _, _, _), (backend_response, backend_response_status_code) = self.generate_response(llm_request)
|
|
|
|
model = self.request_json_body.get('model')
|
|
|
|
if success:
|
|
return self.build_openai_response(self.prompt, backend_response.json['results'][0]['text'], model=model), backend_response_status_code
|
|
else:
|
|
return backend_response, backend_response_status_code
|
|
|
|
def handle_ratelimited(self, do_log: bool = True):
|
|
print('OAI ratelimited:', self.client_ip)
|
|
model_choices, default_model = get_model_choices()
|
|
default_model_info = model_choices[default_model]
|
|
w = int(default_model_info['estimated_wait']) if default_model_info['estimated_wait'] > 0 else 2
|
|
response = jsonify({
|
|
"error": {
|
|
"message": "Rate limit reached on tokens per min. Limit: 10000 / min. Please try again in 6s. Contact us through our help center at help.openai.com if you continue to have issues.",
|
|
"type": "rate_limit_exceeded",
|
|
"param": None,
|
|
"code": None
|
|
}
|
|
})
|
|
response.headers['x-ratelimit-limit-requests'] = '2'
|
|
response.headers['x-ratelimit-remaining-requests'] = '0'
|
|
response.headers['x-ratelimit-reset-requests'] = f"{w}s"
|
|
|
|
if do_log:
|
|
log_to_db(self.client_ip, self.token, self.request_json_body.get('prompt', ''), response.data.decode('utf-8'), None, self.parameters, dict(self.request.headers), 429, self.request.url, self.backend_url, is_error=True)
|
|
|
|
return response, 429
|
|
|
|
def handle_error(self, error_msg: str, error_type: str = 'error') -> Tuple[flask.Response, int]:
|
|
return jsonify({
|
|
"error": {
|
|
"message": "Invalid request, check your parameters and try again.",
|
|
"type": "invalid_request_error",
|
|
"param": None,
|
|
"code": None
|
|
}
|
|
}), 400
|
|
|
|
def build_openai_response(self, prompt, response, model=None):
|
|
# Seperate the user's prompt from the context
|
|
x = prompt.split('### USER:')
|
|
if len(x) > 1:
|
|
prompt = re.sub(r'\n$', '', x[-1].strip(' '))
|
|
|
|
# Make sure the bot doesn't put any other instructions in its response
|
|
response = re.sub(ANTI_RESPONSE_RE, '', response)
|
|
response = re.sub(ANTI_CONTINUATION_RE, '', response)
|
|
|
|
prompt_tokens = get_token_count(prompt, self.backend_url)
|
|
response_tokens = get_token_count(response, self.backend_url)
|
|
running_model = redis.get('running_model', 'ERROR', dtype=str)
|
|
|
|
response = make_response(jsonify({
|
|
"id": f"chatcmpl-{generate_oai_string(30)}",
|
|
"object": "chat.completion",
|
|
"created": int(time.time()),
|
|
"model": running_model if opts.openai_expose_our_model else model,
|
|
"choices": [{
|
|
"index": 0,
|
|
"message": {
|
|
"role": "assistant",
|
|
"content": response,
|
|
},
|
|
"logprobs": None,
|
|
"finish_reason": "stop"
|
|
}],
|
|
"usage": {
|
|
"prompt_tokens": prompt_tokens,
|
|
"completion_tokens": response_tokens,
|
|
"total_tokens": prompt_tokens + response_tokens
|
|
}
|
|
}), 200)
|
|
|
|
stats = redis.get('proxy_stats', dtype=dict)
|
|
if stats:
|
|
response.headers['x-ratelimit-reset-requests'] = stats['queue']['estimated_wait_sec']
|
|
return response
|
|
|
|
def validate_request(self, prompt: str = None, do_log: bool = False) -> Tuple[bool, Tuple[Response | None, int]]:
|
|
invalid_oai_err_msg = validate_oai(self.request_json_body)
|
|
if invalid_oai_err_msg:
|
|
return False, invalid_oai_err_msg
|
|
self.request_json_body = oai_to_vllm(self.request_json_body, stop_hashes=('instruct' not in self.request_json_body['model'].lower()), mode=self.cluster_backend_info['mode'])
|
|
# If the parameters were invalid, let the superclass deal with it.
|
|
return super().validate_request(prompt, do_log)
|