This repository has been archived on 2024-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
server-personification/run.py

157 lines
6.2 KiB
Python
Executable File

#!/usr/bin/env python3
import os
import re
import readline
import signal
import socket
import sys
from pathlib import Path
from langchain.agents import AgentExecutor
from langchain.agents.format_scratchpad import format_to_openai_function_messages
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
from langchain_core.messages import SystemMessage
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables import RunnableConfig
from langchain_core.utils.function_calling import convert_to_openai_function
from langchain_openai import ChatOpenAI
from termcolor import colored
import pers
from pers.langchain.agent import AgentInput
from pers.langchain.callbacks import CallbackHandler
from pers.langchain.history import HistoryManager
from pers.langchain.tools.agent_end_response import end_my_response
from pers.langchain.tools.bash import run_bash
from pers.langchain.tools.browser import render_webpage_tool
from pers.langchain.tools.document_manager import DocumentManager, retrieve_from_chroma
from pers.langchain.tools.google import search_google, search_google_news, search_google_maps
from pers.langchain.tools.python import run_python
from pers.langchain.tools.terminate import terminate_chat
from pers.langchain.tools.web_reader import read_webpage
from pers.load import load_config
from pers.personality import load_personality
def signal_handler(sig, frame):
print()
sys.exit(0)
# Keep pycharm from removing this import.
readline.get_completion_type()
signal.signal(signal.SIGINT, signal_handler)
MANUAL_STOP_RE = re.compile(r'(\n|\s)*(functions\.)*end_my_response(\(\))*(.*)', re.MULTILINE)
def init():
script_path = os.path.dirname(os.path.realpath(__file__))
program_config = load_config(Path(script_path, 'config.yml'), ['openai_key', 'player_name', 'flush_redis_on_launch'])
character_config = load_config(Path(script_path, 'character.yml'), ['name', 'personality', 'system_desc', 'gender', 'temperature', 'model'])
pers.GLOBALS.OPENAI_KEY = program_config['openai_key']
pers.GLOBALS.ChatHistory = HistoryManager(
flush=program_config['flush_redis_on_launch'],
timestamp_messages=program_config.get('timestamp_messages', False),
)
pers.GLOBALS.DocumentManager = DocumentManager()
if program_config.get('serpapi_api_key'):
pers.GLOBALS.SERPAPI_API_KEY = program_config['serpapi_api_key']
pers.GLOBALS.OpenAI = ChatOpenAI(model_name=character_config['model'], openai_api_key=program_config['openai_key'], temperature=character_config['temperature'])
character_card = load_personality(
player_name=program_config['player_name'],
name=character_config['name'],
personality=character_config['personality'],
system=character_config['system_desc'],
gender=character_config['gender'],
special_instructions=character_config.get('special_instructions'),
player_location=program_config.get('player_location')
)
return program_config, character_config, character_card
def main():
program_config, character_config, character_card = init()
prompt = ChatPromptTemplate.from_messages(
[
("system", character_card),
MessagesPlaceholder(variable_name="chat_history"),
("user", "{input}"),
MessagesPlaceholder(variable_name="agent_scratchpad"),
]
)
tools = [end_my_response, run_bash, run_python, search_google, search_google_maps, search_google_news, retrieve_from_chroma, read_webpage, render_webpage_tool, terminate_chat]
llm_with_tools = pers.GLOBALS.OpenAI.bind(functions=[convert_to_openai_function(t) for t in tools])
agent = (
{
"input": lambda x: x["input"],
"chat_history": lambda x: x["chat_history"],
"agent_scratchpad": lambda x: format_to_openai_function_messages(
x["intermediate_steps"]
),
}
| prompt
| llm_with_tools
| OpenAIFunctionsAgentOutputParser()
)
handler = CallbackHandler()
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=False, callbacks=[handler]).with_types(
input_type=AgentInput
)
print(colored(f'System Management Intelligence Interface', 'green', attrs=['bold']) + ' ' + colored(character_config['name'], 'green', attrs=['bold', 'underline']) + colored(' on ', 'green', attrs=['bold']) + colored(socket.gethostname(), 'green', attrs=['bold', 'underline']) + '\n')
while True:
try:
next_input = str(input('> '))
except EOFError:
print('Exit')
sys.exit(0)
print('')
pers.GLOBALS.ChatHistory.add_human_msg(next_input)
i = 0
while True:
temp_context = pers.GLOBALS.ChatHistory.history
if i > 0:
# Insert a prompt if this is not the first message.
temp_context.append(
SystemMessage(content="Evaluate your progress on the current task. Call `end_my_response` after you have responded and are ready for the human's next message.")
)
if pers.GLOBALS.ChatHistory.acknowledge_stop():
break
result = agent_executor.invoke({"input": next_input, "chat_history": temp_context}, config=RunnableConfig(callbacks=[handler]))
# Langchain and the agent are really struggling with end_my_response.
# If the agent gets confused and puts the string "end_my_response" at the end of the msg rather than calling the function, end it manually.
do_stop = False
output = result['output']
if re.search(MANUAL_STOP_RE, output):
output = re.sub(MANUAL_STOP_RE, '', output)
do_stop = True
pers.GLOBALS.ChatHistory.add_agent_msg(output)
# We need to print each line individually since the colored text doesn't support the "\n" character
lines = output.split('\n')
for line in lines:
print(colored(line, 'blue'))
print()
if do_stop:
break
i += 1
if __name__ == "__main__":
main()