From d3d818a57ef67ff5524a46356385b428700df7ed Mon Sep 17 00:00:00 2001 From: Cyberes Date: Mon, 6 Nov 2023 20:40:07 -0700 Subject: [PATCH] clarification --- README.md | 10 +++++++--- exfiltrate.py | 8 +++++--- 2 files changed, 12 insertions(+), 6 deletions(-) diff --git a/README.md b/README.md index d591533..1f98211 100644 --- a/README.md +++ b/README.md @@ -35,13 +35,17 @@ python3 exfiltrate.py \ --threads 30 ``` -Building the GeoTIFF will take dozens of gigs of memory for any significant extent! For example, a 21 mile extent -required about 400GB of memory. You can use swap for this, but don't expect it to be very quick if you go this route. +Building the GeoTIFF will take dozens of gigs of memory for any significant extent! For example, a 336 square mile +extent required about 400GB of memory. You can use swap for this, but don't expect it to be very quick if you go this +route. + +Be careful not to go overboard with your spatial extent. Use only what you need to avoid unnecessary processing time or +else you will end up with a situation where it will take a week to download all the tiles and build a TIFF. ### ArcGIS TODO -### Credits +### Inspiration https://jimmyutterstrom.com/blog/2019/06/05/map-tiles-to-geotiff/ \ No newline at end of file diff --git a/exfiltrate.py b/exfiltrate.py index de682fa..0602f5d 100644 --- a/exfiltrate.py +++ b/exfiltrate.py @@ -114,7 +114,7 @@ if __name__ == '__main__': print(f' {num_cols}x{num_rows}') # Create an empty array to store the image data - print(f'Allocating an array with the shape {num_rows * tile_size, num_cols * tile_size} and dimension 3...') + print(f'Allocating an array with shape {num_rows * tile_size, num_cols * tile_size} and dimension 3...') image_data = np.empty((num_rows * tile_size, num_cols * tile_size, 3), dtype=np.uint8) @@ -149,8 +149,10 @@ if __name__ == '__main__': with ThreadPoolExecutor(max_workers=args.tiff_threads) as executor: futures = {executor.submit(build_tiff_data, task) for task in tiles} - for future in tqdm(as_completed(futures), total=len(futures), desc='Building TIFF'): - pass + bar = tqdm(total=len(futures), desc='Building TIFF', postfix='There may be a lengthy startup time, please be patient!') + for future in as_completed(futures): + bar.set_postfix() + bar.update() # Transpose the image data array to the format (bands, rows, cols). print('Transposing...')