OpenModem/bertos/fs/battfs.c

1034 lines
26 KiB
C
Raw Normal View History

2014-04-03 14:21:37 -06:00
/**
* \file
* <!--
* This file is part of BeRTOS.
*
* Bertos is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* As a special exception, you may use this file as part of a free software
* library without restriction. Specifically, if other files instantiate
* templates or use macros or inline functions from this file, or you compile
* this file and link it with other files to produce an executable, this
* file does not by itself cause the resulting executable to be covered by
* the GNU General Public License. This exception does not however
* invalidate any other reasons why the executable file might be covered by
* the GNU General Public License.
*
* Copyright 2007 Develer S.r.l. (http://www.develer.com/)
*
* -->
*
* \brief BattFS: a filesystem for embedded platforms (implementation).
*
*
* \author Francesco Sacchi <batt@develer.com>
*
*/
#include "battfs.h"
#include "cfg/cfg_battfs.h"
#include <cfg/debug.h>
#include <cfg/macros.h> /* MIN, MAX */
#include <cfg/test.h>
#include <cpu/byteorder.h> /* cpu_to_xx */
#define LOG_LEVEL BATTFS_LOG_LEVEL
#define LOG_FORMAT BATTFS_LOG_FORMAT
#include <cfg/log.h>
#include <string.h> /* memset, memmove */
#if LOG_LEVEL >= LOG_LVL_INFO
static void dumpPageArray(struct BattFsSuper *disk)
{
kprintf("Page array dump, free_page_start %d:", disk->free_page_start);
for (pgcnt_t i = 0; i < disk->dev->blk_cnt; i++)
{
if (!(i % 16))
kputchar('\n');
kprintf("%04d ", disk->page_array[i]);
}
kputchar('\n');
}
#endif
/**
* Convert from memory representation to disk structure.
* \note filesystem is in little-endian format.
*/
INLINE void battfs_to_disk(struct BattFsPageHeader *hdr, uint8_t *buf)
{
STATIC_ASSERT(BATTFS_HEADER_LEN == 12);
buf[0] = hdr->inode;
buf[1] = hdr->fill;
buf[2] = hdr->fill >> 8;
buf[3] = hdr->pgoff;
buf[4] = hdr->pgoff >> 8;
/*
* Sequence number is 40 bits long.
* No need to take care of wraparonds: the memory will die first!
*/
buf[5] = hdr->seq;
buf[6] = hdr->seq >> 8;
buf[7] = hdr->seq >> 16;
buf[8] = hdr->seq >> 24;
buf[9] = hdr->seq >> 32;
/*
* This field must be the last one!
* This is needed because if the page is only partially
* written, we can use this to detect it.
*/
buf[10] = hdr->fcs;
buf[11] = hdr->fcs >> 8;
}
/**
* Convert from disk structure to memory representation.
* \note filesystem is in little-endian format.
*/
INLINE void disk_to_battfs(uint8_t *buf, struct BattFsPageHeader *hdr)
{
STATIC_ASSERT(BATTFS_HEADER_LEN == 12);
hdr->inode = buf[0];
hdr->fill = buf[2] << 8 | buf[1];
hdr->pgoff = buf[4] << 8 | buf[3];
hdr->seq = (seq_t)buf[9] << 32 | (seq_t)buf[8] << 24 | (seq_t)buf[7] << 16 | buf[6] << 8 | buf[5];
hdr->fcs = buf[11] << 8 | buf[10];
}
/**
* Compute the fcs of the header.
*/
static fcs_t computeFcs(struct BattFsPageHeader *hdr)
{
uint8_t buf[BATTFS_HEADER_LEN];
fcs_t cks;
battfs_to_disk(hdr, buf);
rotating_init(&cks);
/* fcs is at the end of whole header */
rotating_update(buf, BATTFS_HEADER_LEN - sizeof(fcs_t), &cks);
return cks;
}
/**
* Read header of \a page in \a hdr.
* \return true on success, false otherwise.
*/
static bool readHdr(struct BattFsSuper *disk, pgcnt_t page, struct BattFsPageHeader *hdr)
{
uint8_t buf[BATTFS_HEADER_LEN];
/*
* Read header from disk.
* Header is actually a footer, and so
* resides at page end.
*/
if (kblock_read(disk->dev, page, buf, disk->data_size, BATTFS_HEADER_LEN)
!= BATTFS_HEADER_LEN)
{
LOG_ERR("page[%d]\n", page);
return false;
}
/* Fill header */
disk_to_battfs(buf, hdr);
return true;
}
static bool writeHdr(struct BattFsSuper *disk, pgcnt_t page, struct BattFsPageHeader *hdr)
{
uint8_t buf[BATTFS_HEADER_LEN];
#warning FIXME:refactor computeFcs to save time and stack
hdr->fcs = computeFcs(hdr);
/* Fill buffer */
battfs_to_disk(hdr, buf);
/*
* write header to disk.
* Header is actually a footer, and so
* resides at page end.
*/
if (kblock_write(disk->dev, page, buf, disk->data_size, BATTFS_HEADER_LEN)
!= BATTFS_HEADER_LEN)
{
LOG_ERR("writing to buffer\n");
return false;
}
return true;
}
/**
* Count the number of pages from
* inode 0 to \a inode in \a filelen_table.
*/
static pgcnt_t countPages(pgoff_t *filelen_table, inode_t inode)
{
pgcnt_t cnt = 0;
for (inode_t i = 0; i < inode; i++)
cnt += filelen_table[i];
return cnt;
}
/**
* Move all pages in page allocation array from \a src to \a src + \a offset.
* The number of pages moved is page_count - MAX(dst, src).
*/
static void movePages(struct BattFsSuper *disk, pgcnt_t src, int offset)
{
pgcnt_t dst = src + offset;
LOG_INFO("src %d, offset %d, size %d\n", src, offset, (unsigned int)((disk->dev->blk_cnt - MAX(dst, src)) * sizeof(pgcnt_t)));
memmove(&disk->page_array[dst], &disk->page_array[src], (disk->dev->blk_cnt - MAX(dst, src)) * sizeof(pgcnt_t));
if (offset < 0)
{
/* Fill empty space in array with sentinel */
for (pgcnt_t page = disk->dev->blk_cnt + offset; page < disk->dev->blk_cnt; page++)
disk->page_array[page] = PAGE_UNSET_SENTINEL;
}
}
/**
* Count number of pages per file on \a disk.
* This information is registered in \a filelen_table.
* Array index represent file inode, while value contained
* is the number of pages used by that file.
*
* \return true if ok, false on disk read errors.
* \note The whole disk is scanned once.
*/
static bool countDiskFilePages(struct BattFsSuper *disk, pgoff_t *filelen_table)
{
BattFsPageHeader hdr;
disk->free_page_start = 0;
/* Count the number of disk page per file */
for (pgcnt_t page = 0; page < disk->dev->blk_cnt; page++)
{
if (!readHdr(disk, page, &hdr))
return false;
/* Increase free space */
disk->free_bytes += disk->data_size;
/* Check header FCS */
if (hdr.fcs == computeFcs(&hdr))
{
ASSERT(hdr.fill <= disk->data_size);
/* Page is valid and is owned by a file */
filelen_table[hdr.inode]++;
/* Keep trace of free space */
disk->free_bytes -= hdr.fill;
disk->free_page_start++;
}
}
LOG_INFO("free_bytes:%ld, free_page_start:%d\n", (long)disk->free_bytes, disk->free_page_start);
return true;
}
/**
* Fill page allocation array of \a disk
* using file lenghts in \a filelen_table.
*
* The page allocation array is an array containings all file infos.
* Is ordered by file, and within each file is ordered by page offset
* inside file.
* e.g. : at page array[0] you will find page address of the first page
* of the first file (if present).
* Free blocks are allocated after the last file.
*
* \return true if ok, false on disk read errors.
* \note The whole disk is scanned at max twice.
*/
static bool fillPageArray(struct BattFsSuper *disk, pgoff_t *filelen_table)
{
BattFsPageHeader hdr;
pgcnt_t curr_free_page = disk->free_page_start;
/* Fill page allocation array */
for (pgcnt_t page = 0; page < disk->dev->blk_cnt; page++)
{
if (!readHdr(disk, page, &hdr))
return false;
/* Check header FCS */
if (hdr.fcs == computeFcs(&hdr))
{
/* Compute array position */
pgcnt_t array_pos = countPages(filelen_table, hdr.inode);
array_pos += hdr.pgoff;
/* Check if position is already used by another page of the same file */
if (disk->page_array[array_pos] == PAGE_UNSET_SENTINEL)
disk->page_array[array_pos] = page;
else
{
BattFsPageHeader hdr_prv;
if (!readHdr(disk, disk->page_array[array_pos], &hdr_prv))
return false;
/* Check header FCS */
ASSERT(hdr_prv.fcs == computeFcs(&hdr_prv));
/* Only the very same page with a different seq number can be here */
ASSERT(hdr.inode == hdr_prv.inode);
ASSERT(hdr.pgoff == hdr_prv.pgoff);
ASSERT(hdr.seq != hdr_prv.seq);
pgcnt_t new_page, old_page;
fill_t old_fill;
/*
* Sequence number comparison: since
* seq is 40 bits wide, it wraps once
* every 1.1E12 times.
* The memory will not live enough to
* see a wraparound, so we can use a simple
* compare here.
*/
if (hdr.seq > hdr_prv.seq)
{
/* Current header is newer than the previuos one */
old_page = disk->page_array[array_pos];
new_page = page;
old_fill = hdr_prv.fill;
}
else
{
/* Previous header is newer than the current one */
old_page = page;
new_page = disk->page_array[array_pos];
old_fill = hdr.fill;
}
/* Set new page */
disk->page_array[array_pos] = new_page;
/* Add free space */
disk->free_bytes += old_fill;
/* Shift all array one position to the left, overwriting duplicate page */
array_pos -= hdr.pgoff;
array_pos += filelen_table[hdr.inode];
movePages(disk, array_pos, -1);
/* Move back all indexes */
filelen_table[hdr.inode]--;
disk->free_page_start--;
curr_free_page--;
/* Set old page as free */
ASSERT(disk->page_array[curr_free_page] == PAGE_UNSET_SENTINEL);
disk->page_array[curr_free_page++] = old_page;
}
}
else
{
/* Invalid page, keep as free */
ASSERT(disk->page_array[curr_free_page] == PAGE_UNSET_SENTINEL);
//LOG_INFO("Page %d invalid, keeping as free\n", page);
disk->page_array[curr_free_page++] = page;
}
}
return true;
}
/**
* Initialize and mount disk described by
* \a disk.
* \return false on errors, true otherwise.
*/
bool battfs_mount(struct BattFsSuper *disk, struct KBlock *dev, pgcnt_t *page_array, size_t array_size)
{
pgoff_t filelen_table[BATTFS_MAX_FILES];
ASSERT(dev);
ASSERT(kblock_partialWrite(dev));
disk->dev = dev;
ASSERT(disk->dev->blk_size > BATTFS_HEADER_LEN);
/* Fill page_size with the usable space */
disk->data_size = disk->dev->blk_size - BATTFS_HEADER_LEN;
ASSERT(disk->dev->blk_cnt);
ASSERT(disk->dev->blk_cnt < PAGE_UNSET_SENTINEL - 1);
ASSERT(page_array);
disk->page_array = page_array;
ASSERT(array_size >= disk->dev->blk_cnt * sizeof(pgcnt_t));
memset(filelen_table, 0, BATTFS_MAX_FILES * sizeof(pgoff_t));
disk->free_bytes = 0;
disk->disk_size = (disk_size_t)disk->data_size * disk->dev->blk_cnt;
/* Count pages per file */
if (!countDiskFilePages(disk, filelen_table))
{
LOG_ERR("counting file pages\n");
return false;
}
/* Once here, we have filelen_table filled with file lengths */
/* Fill page array with sentinel */
for (pgcnt_t page = 0; page < disk->dev->blk_cnt; page++)
disk->page_array[page] = PAGE_UNSET_SENTINEL;
/* Fill page allocation array using filelen_table */
if (!fillPageArray(disk, filelen_table))
{
LOG_ERR("filling page array\n");
return false;
}
#if LOG_LEVEL >= LOG_LVL_INFO
dumpPageArray(disk);
#endif
#if CONFIG_BATTFS_SHUFFLE_FREE_PAGES
SHUFFLE(&disk->page_array[disk->free_page_start], disk->dev->blk_cnt - disk->free_page_start);
LOG_INFO("Page array after shuffle:\n");
#if LOG_LEVEL >= LOG_LVL_INFO
dumpPageArray(disk);
#endif
#endif
/* Init list for opened files. */
LIST_INIT(&disk->file_opened_list);
return true;
}
/**
* Check the filesystem.
* \return true if ok, false on errors.
*/
bool battfs_fsck(struct BattFsSuper *disk)
{
#define FSCHECK(cond) do { if(!(cond)) { LOG_ERR("\"" #cond "\"\n"); return false; } } while (0)
FSCHECK(disk->free_page_start <= disk->dev->blk_cnt);
FSCHECK(disk->data_size < disk->dev->blk_size);
FSCHECK(disk->free_bytes <= disk->disk_size);
disk_size_t free_bytes = 0;
BattFsPageHeader hdr, prev_hdr;
inode_t files = 0;
pgcnt_t page_used = 0;
bool start = true;
/* Uneeded, the first time will be overwritten but useful to silence
* the warning for uninitialized value */
FSCHECK(readHdr(disk, 0, &prev_hdr));
for (pgcnt_t page = 0; page < disk->dev->blk_cnt; page++)
{
FSCHECK(readHdr(disk, disk->page_array[page], &hdr));
free_bytes += disk->data_size;
if (page < disk->free_page_start)
{
FSCHECK(computeFcs(&hdr) == hdr.fcs);
page_used++;
free_bytes -= hdr.fill;
if (hdr.inode != prev_hdr.inode || start)
{
if (LIKELY(!start))
FSCHECK(hdr.inode > prev_hdr.inode);
else
start = false;
FSCHECK(hdr.pgoff == 0);
files++;
}
else
{
FSCHECK(hdr.fill != 0);
FSCHECK(prev_hdr.fill == disk->data_size);
FSCHECK(hdr.pgoff == prev_hdr.pgoff + 1);
}
prev_hdr = hdr;
}
}
FSCHECK(page_used == disk->free_page_start);
FSCHECK(free_bytes == disk->free_bytes);
return true;
}
/**
* Flush file \a fd.
* \return 0 if ok, EOF on errors.
*/
static int battfs_flush(struct KFile *fd)
{
BattFs *fdb = BATTFS_CAST(fd);
if (kblock_flush(fdb->disk->dev) == 0)
return 0;
else
{
fdb->errors |= BATTFS_DISK_FLUSHBUF_ERR;
return EOF;
}
}
/**
* Close file \a fd.
* \return 0 if ok, EOF on errors.
*/
static int battfs_fileclose(struct KFile *fd)
{
BattFs *fdb = BATTFS_CAST(fd);
if (battfs_flush(fd) == 0)
{
REMOVE(&fdb->link);
return 0;
}
else
return EOF;
}
#define NO_SPACE PAGE_UNSET_SENTINEL
static pgcnt_t allocateNewPage(struct BattFsSuper *disk, pgcnt_t new_pos, inode_t inode)
{
if (SPACE_OVER(disk))
{
LOG_ERR("No disk space available!\n");
return NO_SPACE;
}
LOG_INFO("Getting new page %d, pos %d\n", disk->page_array[disk->free_page_start], new_pos);
pgcnt_t new_page = disk->page_array[disk->free_page_start++];
memmove(&disk->page_array[new_pos + 1], &disk->page_array[new_pos], (disk->free_page_start - new_pos - 1) * sizeof(pgcnt_t));
Node *n;
/* Move following file start point one position ahead. */
FOREACH_NODE(n, &disk->file_opened_list)
{
BattFs *file = containerof(n, BattFs, link);
if (file->inode > inode)
{
LOG_INFO("Move file %d start pos\n", file->inode);
file->start++;
}
}
disk->page_array[new_pos] = new_page;
return new_page;
}
static pgcnt_t renewPage(struct BattFsSuper *disk, pgcnt_t old_pos)
{
if (SPACE_OVER(disk))
{
LOG_ERR("No disk space available!\n");
return NO_SPACE;
}
/* Get a free page */
pgcnt_t new_page = disk->page_array[disk->free_page_start];
movePages(disk, disk->free_page_start + 1, -1);
/* Insert previous page in free blocks list */
LOG_INFO("Setting page %d as free\n", old_pos);
disk->page_array[disk->dev->blk_cnt - 1] = old_pos;
return new_page;
}
/**
* Write to file \a fd \a size bytes from \a buf.
* \return The number of bytes written.
*/
static size_t battfs_write(struct KFile *fd, const void *_buf, size_t size)
{
BattFs *fdb = BATTFS_CAST(fd);
BattFsSuper *disk = fdb->disk;
const uint8_t *buf = (const uint8_t *)_buf;
size_t total_write = 0;
pgoff_t pg_offset;
pgaddr_t addr_offset;
pgaddr_t wr_len;
BattFsPageHeader curr_hdr;
pgcnt_t new_page;
if (fd->seek_pos < 0)
{
fdb->errors |= BATTFS_NEGATIVE_SEEK_ERR;
return total_write;
}
if (fd->seek_pos > fd->size)
{
if (!readHdr(disk, fdb->start[fdb->max_off], &curr_hdr))
{
fdb->errors |= BATTFS_DISK_READ_ERR;
return total_write;
}
/*
* Renew page only if is not in cache.
* This avoids rewriting the same page continuously
* if the user code keeps writing in the same portion
* of the file.
*/
if (kblock_buffered(disk->dev)
&& ((fdb->start[fdb->max_off] != kblock_cachedBlock(disk->dev)) || !kblock_cacheDirty(disk->dev)))
{
new_page = renewPage(disk, fdb->start[fdb->max_off]);
if (new_page == NO_SPACE)
{
fdb->errors |= BATTFS_DISK_SPACEOVER_ERR;
return total_write;
}
kblock_copy(disk->dev, fdb->start[fdb->max_off], new_page);
fdb->start[fdb->max_off] = new_page;
}
else
new_page = fdb->start[fdb->max_off];
/* Fill unused space of first page with 0s */
uint8_t dummy = 0;
// TODO: write in blocks to speed up things
pgaddr_t zero_bytes = MIN(fd->seek_pos - fd->size, (kfile_off_t)(disk->data_size - curr_hdr.fill));
while (zero_bytes--)
{
if (kblock_write(disk->dev, new_page, &dummy, curr_hdr.fill, 1) != 1)
{
fdb->errors |= BATTFS_DISK_WRITE_ERR;
return total_write;
}
curr_hdr.fill++;
fd->size++;
disk->free_bytes--;
}
curr_hdr.seq++;
if (!writeHdr(disk, new_page, &curr_hdr))
{
fdb->errors |= BATTFS_DISK_WRITE_ERR;
return total_write;
}
/* Allocate the missing pages first. */
pgoff_t missing_pages = fd->seek_pos / disk->data_size - fdb->max_off;
LOG_INFO("missing pages: %d\n", missing_pages);
while (missing_pages--)
{
zero_bytes = MIN((kfile_off_t)disk->data_size, fd->seek_pos - fd->size);
new_page = allocateNewPage(disk, (fdb->start - disk->page_array) + fdb->max_off + 1, fdb->inode);
if (new_page == NO_SPACE)
{
fdb->errors |= BATTFS_DISK_SPACEOVER_ERR;
return total_write;
}
// TODO: write in blocks to speed up things
/* Fill page buffer with 0 to avoid filling unused pages with garbage */
for (pgaddr_t off = 0; off < disk->data_size; off++)
{
if (kblock_write(disk->dev, new_page, &dummy, off, 1) != 1)
{
fdb->errors |= BATTFS_DISK_WRITE_ERR;
return total_write;
}
}
curr_hdr.inode = fdb->inode;
curr_hdr.pgoff = ++fdb->max_off;
curr_hdr.fill = zero_bytes;
curr_hdr.seq = 0;
if (!writeHdr(disk, new_page, &curr_hdr))
{
fdb->errors |= BATTFS_DISK_WRITE_ERR;
return total_write;
}
/* Update size and free space left */
fd->size += zero_bytes;
disk->free_bytes -= zero_bytes;
}
}
while (size)
{
pg_offset = fd->seek_pos / disk->data_size;
addr_offset = fd->seek_pos % disk->data_size;
wr_len = MIN(size, (size_t)(disk->data_size - addr_offset));
/* Handle write outside EOF */
if (pg_offset > fdb->max_off)
{
LOG_INFO("New page needed, pg_offset %d, pos %d\n", pg_offset, (int)((fdb->start - disk->page_array) + pg_offset));
new_page = allocateNewPage(disk, (fdb->start - disk->page_array) + pg_offset, fdb->inode);
if (new_page == NO_SPACE)
{
fdb->errors |= BATTFS_DISK_SPACEOVER_ERR;
return total_write;
}
curr_hdr.inode = fdb->inode;
curr_hdr.pgoff = pg_offset;
curr_hdr.fill = 0;
curr_hdr.seq = 0;
fdb->max_off = pg_offset;
}
else
{
if (!readHdr(disk, fdb->start[pg_offset], &curr_hdr))
{
fdb->errors |= BATTFS_DISK_READ_ERR;
return total_write;
}
/* Renew page only if is not in cache. */
if (kblock_buffered(disk->dev)
&& ((fdb->start[fdb->max_off] != kblock_cachedBlock(disk->dev)) || !kblock_cacheDirty(disk->dev)))
{
new_page = renewPage(disk, fdb->start[pg_offset]);
if (new_page == NO_SPACE)
{
fdb->errors |= BATTFS_DISK_SPACEOVER_ERR;
return total_write;
}
LOG_INFO("Re-writing page %d to %d\n", fdb->start[pg_offset], new_page);
if (kblock_copy(disk->dev, fdb->start[pg_offset], new_page) != 0)
{
fdb->errors |= BATTFS_DISK_WRITE_ERR;
return total_write;
}
fdb->start[pg_offset] = new_page;
}
else
{
LOG_INFO("Using cached block %d\n", fdb->start[pg_offset]);
new_page = fdb->start[pg_offset];
}
curr_hdr.seq++;
}
//LOG_INFO("writing to buffer for page %d, offset %d, size %d\n", disk->curr_page, addr_offset, wr_len);
if (kblock_write(disk->dev, new_page, buf, addr_offset, wr_len) != wr_len)
{
fdb->errors |= BATTFS_DISK_WRITE_ERR;
return total_write;
}
size -= wr_len;
fd->seek_pos += wr_len;
total_write += wr_len;
buf += wr_len;
fill_t fill_delta = MAX((int32_t)(addr_offset + wr_len) - curr_hdr.fill, (int32_t)0);
disk->free_bytes -= fill_delta;
fd->size += fill_delta;
curr_hdr.fill += fill_delta;
if (!writeHdr(disk, new_page, &curr_hdr))
{
fdb->errors |= BATTFS_DISK_WRITE_ERR;
return total_write;
}
//LOG_INFO("free_bytes %d, seek_pos %d, size %d, curr_hdr.fill %d\n", disk->free_bytes, fd->seek_pos, fd->size, curr_hdr.fill);
}
return total_write;
}
/**
* Read from file \a fd \a size bytes in \a buf.
* \return The number of bytes read.
*/
static size_t battfs_read(struct KFile *fd, void *_buf, size_t size)
{
BattFs *fdb = BATTFS_CAST(fd);
BattFsSuper *disk = fdb->disk;
uint8_t *buf = (uint8_t *)_buf;
size_t total_read = 0;
pgoff_t pg_offset;
pgaddr_t addr_offset;
pgaddr_t read_len;
if (fd->seek_pos < 0)
{
fdb->errors |= BATTFS_NEGATIVE_SEEK_ERR;
return total_read;
}
size = MIN((kfile_off_t)size, MAX(fd->size - fd->seek_pos, (kfile_off_t)0));
while (size)
{
pg_offset = fd->seek_pos / disk->data_size;
addr_offset = fd->seek_pos % disk->data_size;
read_len = MIN(size, (size_t)(disk->data_size - addr_offset));
//LOG_INFO("reading from page %d, offset %d, size %d\n", fdb->start[pg_offset], addr_offset, read_len);
/* Read from disk */
if (kblock_read(disk->dev, fdb->start[pg_offset], buf, addr_offset, read_len) != read_len)
{
fdb->errors |= BATTFS_DISK_READ_ERR;
return total_read;
}
#ifdef _DEBUG
BattFsPageHeader hdr;
readHdr(disk, fdb->start[pg_offset], &hdr);
ASSERT(hdr.inode == fdb->inode);
#endif
size -= read_len;
fd->seek_pos += read_len;
total_read += read_len;
buf += read_len;
}
return total_read;
}
/**
* Search file \a inode in \a disk using a binary search.
* \a last is filled with array offset of file start
* in disk->page_array if file is found, otherwise
* \a last is filled with the correct insert position
* for creating a file with the given \a inode.
* \return true if file is found, false otherwisr.
*/
static bool findFile(BattFsSuper *disk, inode_t inode, pgcnt_t *last)
{
BattFsPageHeader hdr;
pgcnt_t first = 0, page;
*last = disk->free_page_start;
fcs_t fcs;
while (first < *last)
{
page = (first + *last) / 2;
LOG_INFO("first %d, last %d, page %d\n", first, *last, page);
if (!readHdr(disk, disk->page_array[page], &hdr))
return false;
LOG_INFO("inode read: %d\n", hdr.inode);
fcs = computeFcs(&hdr);
if (hdr.fcs == fcs && hdr.inode == inode)
{
*last = page - hdr.pgoff;
LOG_INFO("Found: %d\n", *last);
return true;
}
else if (hdr.fcs == fcs && hdr.inode < inode)
first = page + 1;
else
*last = page;
}
LOG_INFO("Not found: last %d\n", *last);
return false;
}
/**
* \return true if file \a inode exists on \a disk, false otherwise.
*/
bool battfs_fileExists(BattFsSuper *disk, inode_t inode)
{
pgcnt_t dummy;
return findFile(disk, inode, &dummy);
}
/**
* Count size of file \a inode on \a disk, starting at pointer \a start
* in disk->page_array. Size is written in \a size.
* \return true if all s ok, false on disk read errors.
*/
static file_size_t countFileSize(BattFsSuper *disk, pgcnt_t *start, inode_t inode)
{
file_size_t size = 0;
BattFsPageHeader hdr;
while (start < &disk->page_array[disk->free_page_start])
{
if (!readHdr(disk, *start++, &hdr))
return EOF;
if (hdr.fcs == computeFcs(&hdr) && hdr.inode == inode)
size += hdr.fill;
else
break;
}
return size;
}
static int battfs_error(struct KFile *fd)
{
BattFs *fdb = BATTFS_CAST(fd);
return fdb->errors;
}
static void battfs_clearerr(struct KFile *fd)
{
BattFs *fdb = BATTFS_CAST(fd);
fdb->errors = 0;
}
/**
* Open file \a inode from \a disk in \a mode.
* File context is stored in \a fd.
* \return true if ok, false otherwise.
*/
bool battfs_fileopen(BattFsSuper *disk, BattFs *fd, inode_t inode, filemode_t mode)
{
Node *n;
memset(fd, 0, sizeof(*fd));
/* Search file start point in disk page array */
pgcnt_t start_pos;
if (!findFile(disk, inode, &start_pos))
{
LOG_INFO("file %d not found\n", inode);
if (!(mode & BATTFS_CREATE))
{
fd->errors |= BATTFS_FILE_NOT_FOUND_ERR;
return false;
}
/* Create the file */
BattFsPageHeader hdr;
if (allocateNewPage(disk, start_pos, inode) == NO_SPACE)
{
fd->errors |= BATTFS_DISK_SPACEOVER_ERR;
return false;
}
hdr.inode = inode;
hdr.pgoff = 0;
hdr.fill = 0;
hdr.seq = 0;
if (!writeHdr(disk, disk->page_array[start_pos], &hdr))
{
fd->errors |= BATTFS_DISK_WRITE_ERR;
return false;
}
}
fd->start = &disk->page_array[start_pos];
LOG_INFO("Start pos %d\n", start_pos);
/* Fill file size */
if ((fd->fd.size = countFileSize(disk, fd->start, inode)) == EOF)
{
fd->errors |= BATTFS_DISK_READ_ERR;
return false;
}
fd->max_off = fd->fd.size / disk->data_size;
/* Reset seek position */
fd->fd.seek_pos = 0;
/* Insert file handle in list, ordered by inode, ascending. */
FOREACH_NODE(n, &disk->file_opened_list)
{
BattFs *file = containerof(n, BattFs, link);
if (file->inode >= inode)
break;
}
INSERT_BEFORE(&fd->link, n);
/* Fill in data */
fd->inode = inode;
fd->mode = mode;
fd->disk = disk;
fd->fd.close = battfs_fileclose;
fd->fd.flush = battfs_flush;
fd->fd.read = battfs_read;
fd->fd.reopen = kfile_genericReopen;
fd->fd.seek = kfile_genericSeek;
fd->fd.write = battfs_write;
fd->fd.error = battfs_error;
fd->fd.clearerr = battfs_clearerr;
DB(fd->fd._type = KFT_BATTFS);
return true;
}
/**
* Umount \a disk.
*/
bool battfs_umount(struct BattFsSuper *disk)
{
Node *n;
int res = 0;
/* Close all open files */
FOREACH_NODE(n, &disk->file_opened_list)
{
BattFs *file = containerof(n, BattFs, link);
res += battfs_fileclose(&file->fd);
}
/* Close disk */
return (kblock_flush(disk->dev) == 0) && (kblock_close(disk->dev) == 0) && (res == 0);
}
#if UNIT_TEST
void battfs_writeTestBlock(KBlock *dev, pgcnt_t page, inode_t inode, seq_t seq, fill_t fill, pgoff_t pgoff)
{
uint8_t buf[BATTFS_HEADER_LEN];
battfs_eraseBlock(dev, page);
BattFsPageHeader hdr;
hdr.inode = inode;
hdr.fill = fill;
hdr.pgoff = pgoff;
hdr.seq = seq;
hdr.fcs = computeFcs(&hdr);
battfs_to_disk(&hdr, buf);
ASSERT(kblock_write(dev, page, buf, dev->blk_size - BATTFS_HEADER_LEN, BATTFS_HEADER_LEN) == BATTFS_HEADER_LEN);
ASSERT(kblock_flush(dev) == 0);
}
void battfs_eraseBlock(KBlock *dev, pgcnt_t page)
{
/* Reset page to all 0xff */
uint8_t buf[dev->blk_size];
memset(buf, 0xFF, dev->blk_size);
ASSERT(kblock_write(dev, page, buf, 0, dev->blk_size) == dev->blk_size);
ASSERT(kblock_flush(dev) == 0);
}
#endif