OpenModem/Modem/main.c

250 lines
7.4 KiB
C
Raw Normal View History

2014-04-03 14:21:37 -06:00
2014-04-06 12:26:24 -06:00
//////////////////////////////////////////////////////
// First things first, all the includes we need //
//////////////////////////////////////////////////////
2014-04-06 09:17:13 -06:00
#include <cpu/irq.h> // Interrupt functionality from BertOS
2014-04-06 17:15:52 -06:00
#include "cfg/debug.h" // Debug configuration from BertOS
2014-04-06 09:17:13 -06:00
#include <drv/ser.h> // Serial driver from BertOS
#include <drv/timer.h> // Timer driver from BertOS
#include <stdio.h> // Standard input/output
#include <string.h> // String operations
2014-04-03 14:21:37 -06:00
2014-04-04 03:17:47 -06:00
#include "afsk.h" // Header for AFSK modem
#include "protocol/mp1.h" // Header for MP.1 protocol
2014-04-03 14:21:37 -06:00
#include "compression/heatshrink_encoder.h"
#include "compression/heatshrink_decoder.h"
2014-04-14 03:44:39 -06:00
2014-04-06 12:26:24 -06:00
//////////////////////////////////////////////////////
// A few definitions //
//////////////////////////////////////////////////////
2014-04-06 09:17:13 -06:00
static Afsk afsk; // Declare a AFSK modem struct
static MP1 mp1; // Declare a protocol struct
static Serial ser; // Declare a serial interface struct
2014-04-03 14:21:37 -06:00
2014-04-06 09:17:13 -06:00
#define ADC_CH 0 // Define which channel (pin) we want
// for the ADC (this is A0 on arduino)
2014-04-03 14:21:37 -06:00
2014-04-06 09:17:13 -06:00
#define TEST_TX false // Whether we should send test packets
// periodically, plus what to send:
2014-04-09 15:33:15 -06:00
#define TEST_PACKET "Test MP1 AFSK Packet. Test123."
#define TEST_TX_INTERVAL 10000L
2014-04-03 14:21:37 -06:00
2014-04-04 03:17:47 -06:00
2014-04-06 09:17:13 -06:00
static uint8_t serialBuffer[MP1_MAX_FRAME_LENGTH]; // This is a buffer for incoming serial data
static int sbyte; // For holding byte read from serial port
static int serialLen = 0; // Counter for counting length of data from serial
static bool sertx = false; // Flag signifying whether it's time to send data
// Received on the serial port.
2014-04-03 14:21:37 -06:00
static uint8_t compressedData[MP1_MAX_FRAME_LENGTH];
static uint8_t decompressedData[MP1_MAX_FRAME_LENGTH];
static int freeRam () {
extern int __heap_start, *__brkval;
int v;
return (int) &v - (__brkval == 0 ? (int) &__heap_start : (int) __brkval);
}
static size_t compress(uint8_t *input, size_t length) {
heatshrink_encoder *hse = heatshrink_encoder_alloc(8, 4);
if (hse == NULL) {
kprintf("Could not allocate encoder");
return 0;
}
size_t written = 0;
size_t sunk = 0;
heatshrink_encoder_sink(hse, input, length, &sunk);
int status = heatshrink_encoder_finish(hse);
if (sunk < length) {
kprintf("Not all data was sunk into encoder\n");
heatshrink_encoder_free(hse);
return 0;
} else {
kprintf("Bytes sunk into HSE: %d\n", length);
if (status == HSER_FINISH_MORE) {
heatshrink_encoder_poll(hse, compressedData, MP1_MAX_FRAME_LENGTH, &written);
kprintf("Bytes written into buffer: %d\n", written);
} else {
kprintf("All input data was sunk, but encoder doesn't have any data for us.");
}
}
heatshrink_encoder_free(hse);
return written;
}
static size_t decompress(uint8_t *input, size_t length) {
heatshrink_decoder *hsd = heatshrink_decoder_alloc(MP1_MAX_FRAME_LENGTH, 8, 4);
if (hsd == NULL) {
kprintf("Could not allocate decoder");
return 0;
}
kprintf("\nDecoder allocated. Free RAM: %d bytes\n", freeRam());
size_t written = 0;
size_t sunk = 0;
heatshrink_decoder_sink(hsd, input, length, &sunk);
int status = heatshrink_decoder_finish(hsd);
if (sunk < length) {
kprintf("Not all data was sunk into decoder\n");
heatshrink_decoder_free(hsd);
return 0;
} else {
kprintf("Bytes sunk into HSD: %d\n", length);
if (status == HSER_FINISH_MORE) {
heatshrink_decoder_poll(hsd, decompressedData, MP1_MAX_FRAME_LENGTH, &written);
kprintf("Bytes written into decompression buffer: %d\n", written);
} else {
kprintf("All input data was sunk, but the decoder doesn't have any data for us.");
}
}
heatshrink_decoder_free(hsd);
return written;
}
static void hseTest() {
kprintf("\nFree RAM: %d bytes\n", freeRam());
size_t compressed_size = compress(serialBuffer, serialLen);
size_t decompressed_size = decompress(compressedData, compressed_size);
kprintf("\n-------------------\nInput size: %d\nCompressed size: %d\nDecompressed size: %d\n", serialLen, compressed_size, decompressed_size);
// heatshrink_encoder *hse = heatshrink_encoder_alloc(8, 4);
// kprintf("\nFree RAM: %d bytes\n", freeRam());
// size_t out_sz = 50;
// uint8_t out_buf[out_sz];
// size_t written = 0;
// kprintf("\nFree RAM: %d bytes\n", freeRam());
// size_t length = serialLen;
// heatshrink_encoder_sink(hse, serialBuffer, serialLen, &length);
// int returnv = heatshrink_encoder_finish(hse);
// kprintf("Encoder finish returned: %d\n", returnv);
// if (length < serialLen) {
// kprintf("Not all data was sunk into encoder\n");
// } else {
// // All data delivered
// kprintf("Bytes sunk into HSE: %d\n", length);
// heatshrink_encoder_poll(hse, out_buf, out_sz, &written);
// kprintf("2: Bytes written into buffer: %d\n", written);
// }
// heatshrink_encoder_free(hse);
}
2014-04-03 16:39:51 -06:00
2014-04-06 12:26:24 -06:00
//////////////////////////////////////////////////////
// And here comes the actual program :) //
//////////////////////////////////////////////////////
2014-04-06 09:17:13 -06:00
// This is a callback we register with the protocol,
// so we can process each packet as they are decoded.
// Right now it just prints the packet to the serial port.
2014-04-04 03:17:47 -06:00
static void mp1Callback(struct MP1Packet *packet) {
2014-04-09 15:33:15 -06:00
kfile_printf(&ser.fd, "%.*s\n", packet->dataLength, packet->data);
//kprintf("%.*s\n", packet->dataLength, packet->data);
2014-04-04 03:17:47 -06:00
}
2014-04-03 16:39:51 -06:00
2014-04-06 09:17:13 -06:00
// Simple initialization function.
2014-04-03 14:21:37 -06:00
static void init(void)
{
2014-04-06 09:17:13 -06:00
// Enable interrupts
2014-04-03 14:21:37 -06:00
IRQ_ENABLE;
2014-04-06 09:17:13 -06:00
// Initialize BertOS debug bridge
2014-04-09 15:33:15 -06:00
// kdbg_init();
2014-04-04 09:05:53 -06:00
2014-04-06 09:17:13 -06:00
// Initialize hardware timers
2014-04-03 14:21:37 -06:00
timer_init();
2014-04-06 09:17:13 -06:00
// Initialize serial comms on UART0,
// which is the hardware serial on arduino
ser_init(&ser, SER_UART0);
2014-04-07 05:28:14 -06:00
ser_setbaudrate(&ser, 115200);
2014-04-06 09:17:13 -06:00
// Create a modem context
2014-04-06 12:29:39 -06:00
afsk_init(&afsk, ADC_CH);
2014-04-06 09:17:13 -06:00
// ... and a protocol context with the modem
2014-04-04 03:17:47 -06:00
mp1Init(&mp1, &afsk.fd, mp1Callback);
2014-04-06 09:17:13 -06:00
// That's all!
2014-04-03 14:21:37 -06:00
}
int main(void)
{
2014-04-06 09:17:13 -06:00
// Start by running the main initialization
2014-04-03 14:21:37 -06:00
init();
2014-04-06 09:17:13 -06:00
// Record the current tick count for time-keeping
2014-04-03 16:39:51 -06:00
ticks_t start = timer_clock();
2014-04-04 09:05:53 -06:00
2014-04-06 09:17:13 -06:00
// Go into ye good ol' infinite loop
2014-04-03 14:21:37 -06:00
while (1)
{
2014-04-06 09:17:13 -06:00
// First we instruct the protocol to check for
// incoming data
2014-04-04 03:17:47 -06:00
mp1Poll(&mp1);
2014-04-03 16:39:51 -06:00
2014-04-07 14:06:33 -06:00
2014-04-06 09:17:13 -06:00
// We then read a byte from the serial port.
// Notice that we use "_nowait" since we can't
// have this blocking execution until a byte
// comes in.
2014-04-04 09:05:53 -06:00
sbyte = ser_getchar_nowait(&ser);
2014-04-06 09:17:13 -06:00
// If there was actually some data waiting for us
// there, let's se what it tastes like :)
2014-04-04 09:05:53 -06:00
if (sbyte != EOF) {
2014-04-06 09:17:13 -06:00
// If we have not yet surpassed the maximum frame length
// and the byte is not a "transmit" (newline) character,
// we should store it for transmission.
if ((serialLen < MP1_MAX_FRAME_LENGTH) && (sbyte != 138)) {
// Put the read byte into the buffer;
2014-04-04 09:05:53 -06:00
serialBuffer[serialLen] = sbyte;
2014-04-06 09:17:13 -06:00
// Increment the read length counter
2014-04-04 09:05:53 -06:00
serialLen++;
} else {
2014-04-06 09:17:13 -06:00
// If one of the above conditions were actually the
// case, it means we have to transmit, se we set
// transmission flag to true.
2014-04-04 09:05:53 -06:00
sertx = true;
}
}
2014-04-06 09:17:13 -06:00
// Check whether we should send data in our serial buffer
2014-04-04 09:05:53 -06:00
if (sertx) {
2014-04-06 09:17:13 -06:00
// If we should, pass the buffer to the protocol's
// send function.
hseTest();
// mp1Send(&mp1, serialBuffer, serialLen);
2014-04-14 03:44:39 -06:00
2014-04-06 09:17:13 -06:00
// Reset the transmission flag and length counter
2014-04-04 09:05:53 -06:00
sertx = false;
serialLen = 0;
}
2014-04-06 09:17:13 -06:00
// Periodically send test data if we should do so
2014-04-09 15:33:15 -06:00
if (TEST_TX && timer_clock() - start > ms_to_ticks(TEST_TX_INTERVAL)) {
2014-04-06 09:17:13 -06:00
// Reset the timer counter;
2014-04-03 16:39:51 -06:00
start = timer_clock();
2014-04-06 09:17:13 -06:00
// And send a test packet!
mp1Send(&mp1, TEST_PACKET, sizeof(TEST_PACKET));
2014-04-03 16:39:51 -06:00
}
2014-04-03 14:21:37 -06:00
}
return 0;
2014-04-03 14:41:49 -06:00
}