Protocol-level (12,8) hamming code implemented
This commit is contained in:
parent
ae3bfffd28
commit
b2d2def862
|
@ -3,21 +3,24 @@
|
|||
#include <string.h>
|
||||
#include <drv/ser.h>
|
||||
|
||||
// FIXME: Describe these
|
||||
static uint8_t lastByte = 0x00;
|
||||
static bool sendParityBlock = false;
|
||||
|
||||
INLINE bool BIT(uint8_t byte, int n) { return (byte & BV(n)); }
|
||||
// FIXME: Describe this
|
||||
INLINE bool BIT(uint8_t byte, int n) { return ((byte & BV(n-1))>>(n-1)); }
|
||||
static uint8_t mp1ParityBlock(uint8_t first, uint8_t other) {
|
||||
uint8_t parity = 0x00;
|
||||
parity ^= (BIT(first, 1) ^ BIT(first, 2) ^ BIT(first, 4) ^ BIT(first, 5) ^ BIT(first, 7)) << 7;
|
||||
parity ^= (BIT(first, 1) ^ BIT(first, 3) ^ BIT(first, 4) ^ BIT(first, 6) ^ BIT(first, 7)) << 6;
|
||||
parity ^= (BIT(first, 2) ^ BIT(first, 3) ^ BIT(first, 4) ^ BIT(first, 8)) << 5;
|
||||
parity ^= (BIT(first, 5) ^ BIT(first, 6) ^ BIT(first, 7) ^ BIT(first, 8)) << 4;
|
||||
|
||||
parity ^= BIT(other, 1) ^ BIT(other, 2) ^ BIT(other, 4) ^ BIT(other, 5) ^ BIT(other, 7) << 3;
|
||||
parity ^= BIT(other, 1) ^ BIT(other, 3) ^ BIT(other, 4) ^ BIT(other, 6) ^ BIT(other, 7) << 2;
|
||||
parity ^= BIT(other, 2) ^ BIT(other, 3) ^ BIT(other, 4) ^ BIT(other, 8) << 1;
|
||||
parity ^= BIT(other, 5) ^ BIT(other, 6) ^ BIT(other, 7) ^ BIT(other, 8);
|
||||
parity = ((BIT(first, 1) ^ BIT(first, 2) ^ BIT(first, 4) ^ BIT(first, 5) ^ BIT(first, 7))) +
|
||||
((BIT(first, 1) ^ BIT(first, 3) ^ BIT(first, 4) ^ BIT(first, 6) ^ BIT(first, 7))<<1) +
|
||||
((BIT(first, 2) ^ BIT(first, 3) ^ BIT(first, 4) ^ BIT(first, 8))<<2) +
|
||||
((BIT(first, 5) ^ BIT(first, 6) ^ BIT(first, 7) ^ BIT(first, 8))<<3) +
|
||||
|
||||
((BIT(other, 1) ^ BIT(other, 2) ^ BIT(other, 4) ^ BIT(other, 5) ^ BIT(other, 7))<<4) +
|
||||
((BIT(other, 1) ^ BIT(other, 3) ^ BIT(other, 4) ^ BIT(other, 6) ^ BIT(other, 7))<<5) +
|
||||
((BIT(other, 2) ^ BIT(other, 3) ^ BIT(other, 4) ^ BIT(other, 8))<<6) +
|
||||
((BIT(other, 5) ^ BIT(other, 6) ^ BIT(other, 7) ^ BIT(other, 8))<<7);
|
||||
|
||||
return parity;
|
||||
}
|
||||
|
@ -29,10 +32,20 @@ static void mp1Decode(MP1 *mp1) {
|
|||
// for further processing.
|
||||
MP1Packet packet; // A decoded packet struct
|
||||
uint8_t *buffer = mp1->buffer; // Get the buffer from the protocol context
|
||||
|
||||
// Get the header and "remove" it from the buffer
|
||||
uint8_t header = buffer[0];
|
||||
buffer++;
|
||||
|
||||
// If header indicates a padded packet, remove
|
||||
// padding
|
||||
if (header & 0x01) {
|
||||
buffer++;
|
||||
}
|
||||
|
||||
// Set the payload length of the packet to the counted
|
||||
// length minus 1, so we remove the checksum
|
||||
packet.dataLength = mp1->packetLength - 1;
|
||||
packet.dataLength = mp1->packetLength - 2 - (header & 0x01);
|
||||
packet.data = buffer;
|
||||
|
||||
// If a callback have been specified, let's
|
||||
|
@ -47,93 +60,123 @@ static void mp1Decode(MP1 *mp1) {
|
|||
////////////////////////////////////////////////////////////
|
||||
void mp1Poll(MP1 *mp1) {
|
||||
int byte; // A place to store our read byte
|
||||
sendParityBlock = false; // Reset our parity tx indicator
|
||||
|
||||
// Read bytes from the modem until we reach EOF
|
||||
while ((byte = kfile_getc(mp1->modem)) != EOF) {
|
||||
// We have a byte, increment our read counter
|
||||
mp1->readLength++;
|
||||
|
||||
if (mp1->readLength % 3 != 0) {
|
||||
// This is not a parity byte
|
||||
if (!mp1->escape && byte == HDLC_FLAG) {
|
||||
// We are not in an escape sequence and we
|
||||
// found a HDLC_FLAG. This can mean two things:
|
||||
if (mp1->packetLength >= MP1_MIN_FRAME_LENGTH) {
|
||||
// We already have more data than the minimum
|
||||
// frame length, which means the flag signifies
|
||||
// the end of the packet. Pass control to the
|
||||
// decoder.
|
||||
if ((mp1->checksum_in & 0xff) == 0x00) {
|
||||
mp1Decode(mp1);
|
||||
} else {
|
||||
// Checksum was incorrect, we don't do anything,
|
||||
// but you can enable the decode anyway, if you
|
||||
// need it for testing or debugging
|
||||
// mp1Decode(mp1);
|
||||
// FIXME: Describe error correction
|
||||
if (mp1->reading && (byte != AX25_ESC) ) {
|
||||
mp1->readLength++;
|
||||
|
||||
|
||||
if (mp1->readLength % 3 == 0) {
|
||||
mp1->calculatedParity = mp1ParityBlock(mp1->buffer[mp1->packetLength-2], mp1->buffer[mp1->packetLength-1]);
|
||||
uint8_t syndrome = mp1->calculatedParity ^ byte;
|
||||
if (syndrome == 0x00) {
|
||||
// No problems!
|
||||
} else {
|
||||
uint8_t syndromes[2];
|
||||
syndromes[0] = syndrome & 0x0f;
|
||||
syndromes[1] = (syndrome & 0xf0) >> 4;
|
||||
|
||||
for (int i = 0; i < 2; i++) {
|
||||
uint8_t s = syndromes[i];
|
||||
uint8_t correction = 0x00;
|
||||
if (s == 1 || s == 2 || s == 4 || s == 8) {
|
||||
// Error in parity bit, no correction needed
|
||||
continue;
|
||||
}
|
||||
if (s == 3) correction = 0x01;
|
||||
if (s == 5) correction = 0x02;
|
||||
if (s == 6) correction = 0x04;
|
||||
if (s == 7) correction = 0x08;
|
||||
if (s == 9) correction = 0x10;
|
||||
if (s == 10) correction = 0x20;
|
||||
if (s == 11) correction = 0x40;
|
||||
if (s == 12) correction = 0x80;
|
||||
|
||||
if (correction != 0x00) {
|
||||
mp1->checksum_in ^= correction;
|
||||
}
|
||||
mp1->buffer[mp1->packetLength-(2-i)] ^= correction;
|
||||
}
|
||||
}
|
||||
// If the above is not the case, this must be the
|
||||
// beginning of a frame
|
||||
mp1->reading = true;
|
||||
mp1->packetLength = 0;
|
||||
mp1->readLength = 0;
|
||||
mp1->checksum_in = MP1_CHECKSUM_INIT;
|
||||
|
||||
// We have indicated that we are reading,
|
||||
// and reset the length counter. Now we'll
|
||||
// continue to the next byte.
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!mp1->escape && byte == HDLC_RESET) {
|
||||
// Not good, we got a reset. The transmitting
|
||||
// party may have encountered an error. We'll
|
||||
// stop receiving this packet immediately.
|
||||
mp1->reading = false;
|
||||
continue;
|
||||
}
|
||||
|
||||
// This should be a parity byte
|
||||
if (mp1->readLength % 3 == 0) {
|
||||
uint8_t calculatedParity = mp1ParityBlock(mp1->buffer[mp1->packetLength-2], mp1->buffer[mp1->packetLength-1]);
|
||||
if (byte == calculatedParity) {
|
||||
// Parity match, block is correct
|
||||
} else {
|
||||
// Parity differ, transmission error ocurred
|
||||
kprintf("Parity mismatch");
|
||||
}
|
||||
mp1->readLength = 0;
|
||||
}
|
||||
|
||||
if (!mp1->escape && byte == AX25_ESC) {
|
||||
// We found an escape character. We'll set
|
||||
// the escape seqeunce indicator so we don't
|
||||
// interpret the next byte as a reset or flag
|
||||
mp1->escape = true;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Now let's get to the actual reading of the data
|
||||
if (mp1->reading) {
|
||||
if (mp1->packetLength < MP1_MAX_FRAME_LENGTH) {
|
||||
// If the length of the current incoming frame is
|
||||
// still less than our max length, put the incoming
|
||||
// byte in the buffer.
|
||||
if (!mp1->escape) mp1->checksum_in = mp1->checksum_in ^ byte;
|
||||
mp1->buffer[mp1->packetLength++] = byte;
|
||||
} else {
|
||||
// If not, we have a problem: The buffer has overrun
|
||||
// We need to stop receiving, and the packet will be
|
||||
// dropped :(
|
||||
mp1->reading = false;
|
||||
}
|
||||
}
|
||||
// We need to set the escape sequence indicator back
|
||||
// to false after each byte.
|
||||
mp1->escape = false;
|
||||
} else {
|
||||
|
||||
}
|
||||
// FIXME: Describe error correction //////////
|
||||
|
||||
if (!mp1->escape && byte == HDLC_FLAG) {
|
||||
// We are not in an escape sequence and we
|
||||
// found a HDLC_FLAG. This can mean two things:
|
||||
if (mp1->packetLength >= MP1_MIN_FRAME_LENGTH) {
|
||||
// We already have more data than the minimum
|
||||
// frame length, which means the flag signifies
|
||||
// the end of the packet. Pass control to the
|
||||
// decoder.
|
||||
if ((mp1->checksum_in & 0xff) == 0x00) {
|
||||
kprintf("[OK] ");
|
||||
mp1Decode(mp1);
|
||||
} else {
|
||||
// Checksum was incorrect, we don't do anything,
|
||||
// but you can enable the decode anyway, if you
|
||||
// need it for testing or debugging
|
||||
kprintf("[ER] [%d] ", mp1->checksum_in);
|
||||
mp1Decode(mp1);
|
||||
}
|
||||
}
|
||||
// If the above is not the case, this must be the
|
||||
// beginning of a frame
|
||||
mp1->reading = true;
|
||||
mp1->packetLength = 0;
|
||||
mp1->readLength = 0;
|
||||
mp1->checksum_in = MP1_CHECKSUM_INIT;
|
||||
|
||||
// We have indicated that we are reading,
|
||||
// and reset the length counter. Now we'll
|
||||
// continue to the next byte.
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!mp1->escape && byte == HDLC_RESET) {
|
||||
// Not good, we got a reset. The transmitting
|
||||
// party may have encountered an error. We'll
|
||||
// stop receiving this packet immediately.
|
||||
mp1->reading = false;
|
||||
continue;
|
||||
}
|
||||
|
||||
// This should be a parity byte
|
||||
|
||||
if (!mp1->escape && byte == AX25_ESC) {
|
||||
// We found an escape character. We'll set
|
||||
// the escape seqeunce indicator so we don't
|
||||
// interpret the next byte as a reset or flag
|
||||
mp1->escape = true;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Now let's get to the actual reading of the data
|
||||
if (mp1->reading) {
|
||||
if (mp1->packetLength < MP1_MAX_FRAME_LENGTH) {
|
||||
// If the length of the current incoming frame is
|
||||
// still less than our max length, put the incoming
|
||||
// byte in the buffer.
|
||||
mp1->checksum_in = mp1->checksum_in ^ byte;
|
||||
mp1->buffer[mp1->packetLength++] = byte;
|
||||
} else {
|
||||
// If not, we have a problem: The buffer has overrun
|
||||
// We need to stop receiving, and the packet will be
|
||||
// dropped :(
|
||||
mp1->reading = false;
|
||||
}
|
||||
}
|
||||
|
||||
// We need to set the escape sequence indicator back
|
||||
// to false after each byte.
|
||||
mp1->escape = false;
|
||||
}
|
||||
|
||||
if (kfile_error(mp1->modem)) {
|
||||
|
@ -143,6 +186,7 @@ void mp1Poll(MP1 *mp1) {
|
|||
}
|
||||
}
|
||||
|
||||
// FIXME: Desribe additions here
|
||||
static void mp1Putbyte(MP1 *mp1, uint8_t byte) {
|
||||
// If we are sending something that looks
|
||||
// like an HDLC special byte, send an escape
|
||||
|
@ -152,20 +196,20 @@ static void mp1Putbyte(MP1 *mp1, uint8_t byte) {
|
|||
byte == AX25_ESC) {
|
||||
kfile_putc(AX25_ESC, mp1->modem);
|
||||
lastByte = AX25_ESC;
|
||||
sendParityBlock ^= true;
|
||||
//sendParityBlock ^= true;
|
||||
}
|
||||
|
||||
kfile_putc(byte, mp1->modem);
|
||||
|
||||
if (sendParityBlock) {
|
||||
kfile_putc(mp1ParityBlock(lastByte, byte), mp1->modem);
|
||||
uint8_t p = mp1ParityBlock(lastByte, byte);
|
||||
kfile_putc(p, mp1->modem);
|
||||
}
|
||||
|
||||
lastByte = byte;
|
||||
sendParityBlock ^= true;
|
||||
}
|
||||
|
||||
|
||||
void mp1Send(MP1 *mp1, const void *_buffer, size_t length) {
|
||||
// Get the transmit data buffer
|
||||
const uint8_t *buffer = (const uint8_t *)_buffer;
|
||||
|
@ -176,12 +220,27 @@ void mp1Send(MP1 *mp1, const void *_buffer, size_t length) {
|
|||
// Transmit the HDLC_FLAG to signify start of TX
|
||||
kfile_putc(HDLC_FLAG, mp1->modem);
|
||||
|
||||
// Write header and possibly padding
|
||||
// Remember we also write a header and
|
||||
// a checksum. This ensures that we will
|
||||
// always end our packet with a checksum
|
||||
// and a parity byte.
|
||||
if (length % 2 != 0) {
|
||||
mp1->checksum_out = mp1->checksum_out ^ 0xf1;
|
||||
mp1Putbyte(mp1, 0xf1);
|
||||
mp1->checksum_out = mp1->checksum_out ^ 0x55;
|
||||
mp1Putbyte(mp1, 0x55);
|
||||
} else {
|
||||
mp1->checksum_out = mp1->checksum_out ^ 0xf0;
|
||||
mp1Putbyte(mp1, 0xf0);
|
||||
}
|
||||
|
||||
// Continously increment the pointer address
|
||||
// of the buffer while passing it to the byte
|
||||
// output function
|
||||
while (length--) {
|
||||
mp1->checksum_out = mp1->checksum_out ^ *buffer;
|
||||
mp1Putbyte(mp1, *buffer++);
|
||||
mp1->checksum_out = mp1->checksum_out ^ *buffer;
|
||||
mp1Putbyte(mp1, *buffer++);
|
||||
}
|
||||
|
||||
// Write checksum to end of packet
|
||||
|
|
|
@ -24,14 +24,17 @@ typedef void (*mp1_callback_t)(struct MP1Packet *packet);
|
|||
// Struct for a protocol context
|
||||
typedef struct MP1 {
|
||||
uint8_t buffer[MP1_MAX_FRAME_LENGTH]; // A buffer for incoming packets
|
||||
uint8_t fecBuffer[3]; // FEC buffer
|
||||
KFile *modem; // KFile access to the modem
|
||||
size_t packetLength; // Counter for received packet length
|
||||
size_t readLength; // This is the full read length, including parity bytes
|
||||
uint8_t calculatedParity; // Calculated parity for incoming data block
|
||||
mp1_callback_t callback; // The function to call when a packet has been received
|
||||
uint8_t checksum_in; // Rolling checksum for incoming packets
|
||||
uint8_t checksum_out; // Rolling checksum for outgoing packets
|
||||
bool reading; // True when we have seen a HDLC flag
|
||||
bool escape; // We need to know if we are in an escape sequence
|
||||
bool fecEscape; // fec escape
|
||||
} MP1;
|
||||
|
||||
// A struct encapsulating a network packet
|
||||
|
@ -41,6 +44,7 @@ typedef struct MP1Packet {
|
|||
} MP1Packet;
|
||||
|
||||
void mp1Init(MP1 *mp1, KFile *modem, mp1_callback_t callback);
|
||||
void mp1Read(MP1 *mp1, int byte);
|
||||
void mp1Poll(MP1 *mp1);
|
||||
void mp1Send(MP1 *mp1, const void *_buffer, size_t length);
|
||||
|
||||
|
|
|
@ -1,2 +1,2 @@
|
|||
#define VERS_BUILD 602
|
||||
#define VERS_BUILD 829
|
||||
#define VERS_HOST "vixen"
|
||||
|
|
Loading…
Reference in New Issue