diffusers/tests/test_models_vae.py

119 lines
3.9 KiB
Python
Raw Normal View History

# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from diffusers import AutoencoderKL
Inference support for `mps` device (#355) * Initial support for mps in Stable Diffusion pipeline. * Initial "warmup" implementation when using mps. * Make some deterministic tests pass with mps. * Disable training tests when using mps. * SD: generate latents in CPU then move to device. This is especially important when using the mps device, because generators are not supported there. See for example https://github.com/pytorch/pytorch/issues/84288. In addition, the other pipelines seem to use the same approach: generate the random samples then move to the appropriate device. After this change, generating an image in MPS produces the same result as when using the CPU, if the same seed is used. * Remove prints. * Pass AutoencoderKL test_output_pretrained with mps. Sampling from `posterior` must be done in CPU. * Style * Do not use torch.long for log op in mps device. * Perform incompatible padding ops in CPU. UNet tests now pass. See https://github.com/pytorch/pytorch/issues/84535 * Style: fix import order. * Remove unused symbols. * Remove MPSWarmupMixin, do not apply automatically. We do apply warmup in the tests, but not during normal use. This adopts some PR suggestions by @patrickvonplaten. * Add comment for mps fallback to CPU step. * Add README_mps.md for mps installation and use. * Apply `black` to modified files. * Restrict README_mps to SD, show measures in table. * Make PNDM indexing compatible with mps. Addresses #239. * Do not use float64 when using LDMScheduler. Fixes #358. * Fix typo identified by @patil-suraj Co-authored-by: Suraj Patil <surajp815@gmail.com> * Adapt example to new output style. * Restore 1:1 results reproducibility with CompVis. However, mps latents need to be generated in CPU because generators don't work in the mps device. * Move PyTorch nightly to requirements. * Adapt `test_scheduler_outputs_equivalence` ton MPS. * mps: skip training tests instead of ignoring silently. * Make VQModel tests pass on mps. * mps ddim tests: warmup, increase tolerance. * ScoreSdeVeScheduler indexing made mps compatible. * Make ldm pipeline tests pass using warmup. * Style * Simplify casting as suggested in PR. * Add Known Issues to readme. * `isort` import order. * Remove _mps_warmup helpers from ModelMixin. And just make changes to the tests. * Skip tests using unittest decorator for consistency. * Remove temporary var. * Remove spurious blank space. * Remove unused symbol. * Remove README_mps. Co-authored-by: Suraj Patil <surajp815@gmail.com> Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-09-08 05:37:36 -06:00
from diffusers.modeling_utils import ModelMixin
from diffusers.testing_utils import floats_tensor, torch_device
from .test_modeling_common import ModelTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class AutoencoderKLTests(ModelTesterMixin, unittest.TestCase):
model_class = AutoencoderKL
@property
def dummy_input(self):
batch_size = 4
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
return {"sample": image}
@property
def input_shape(self):
return (3, 32, 32)
@property
def output_shape(self):
return (3, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": [32, 64],
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"latent_channels": 4,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_forward_signature(self):
pass
def test_training(self):
pass
def test_from_pretrained_hub(self):
model, loading_info = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy", output_loading_info=True)
self.assertIsNotNone(model)
self.assertEqual(len(loading_info["missing_keys"]), 0)
model.to(torch_device)
image = model(**self.dummy_input)
assert image is not None, "Make sure output is not None"
def test_output_pretrained(self):
model = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy")
model = model.to(torch_device)
model.eval()
Inference support for `mps` device (#355) * Initial support for mps in Stable Diffusion pipeline. * Initial "warmup" implementation when using mps. * Make some deterministic tests pass with mps. * Disable training tests when using mps. * SD: generate latents in CPU then move to device. This is especially important when using the mps device, because generators are not supported there. See for example https://github.com/pytorch/pytorch/issues/84288. In addition, the other pipelines seem to use the same approach: generate the random samples then move to the appropriate device. After this change, generating an image in MPS produces the same result as when using the CPU, if the same seed is used. * Remove prints. * Pass AutoencoderKL test_output_pretrained with mps. Sampling from `posterior` must be done in CPU. * Style * Do not use torch.long for log op in mps device. * Perform incompatible padding ops in CPU. UNet tests now pass. See https://github.com/pytorch/pytorch/issues/84535 * Style: fix import order. * Remove unused symbols. * Remove MPSWarmupMixin, do not apply automatically. We do apply warmup in the tests, but not during normal use. This adopts some PR suggestions by @patrickvonplaten. * Add comment for mps fallback to CPU step. * Add README_mps.md for mps installation and use. * Apply `black` to modified files. * Restrict README_mps to SD, show measures in table. * Make PNDM indexing compatible with mps. Addresses #239. * Do not use float64 when using LDMScheduler. Fixes #358. * Fix typo identified by @patil-suraj Co-authored-by: Suraj Patil <surajp815@gmail.com> * Adapt example to new output style. * Restore 1:1 results reproducibility with CompVis. However, mps latents need to be generated in CPU because generators don't work in the mps device. * Move PyTorch nightly to requirements. * Adapt `test_scheduler_outputs_equivalence` ton MPS. * mps: skip training tests instead of ignoring silently. * Make VQModel tests pass on mps. * mps ddim tests: warmup, increase tolerance. * ScoreSdeVeScheduler indexing made mps compatible. * Make ldm pipeline tests pass using warmup. * Style * Simplify casting as suggested in PR. * Add Known Issues to readme. * `isort` import order. * Remove _mps_warmup helpers from ModelMixin. And just make changes to the tests. * Skip tests using unittest decorator for consistency. * Remove temporary var. * Remove spurious blank space. * Remove unused symbol. * Remove README_mps. Co-authored-by: Suraj Patil <surajp815@gmail.com> Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-09-08 05:37:36 -06:00
# One-time warmup pass (see #372)
if torch_device == "mps" and isinstance(model, ModelMixin):
image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
image = image.to(torch_device)
with torch.no_grad():
_ = model(image, sample_posterior=True).sample
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
image = torch.randn(
1,
model.config.in_channels,
model.config.sample_size,
model.config.sample_size,
generator=torch.manual_seed(0),
)
image = image.to(torch_device)
with torch.no_grad():
output = model(image, sample_posterior=True, generator=generator).sample
output_slice = output[0, -1, -3:, -3:].flatten().cpu()
2022-09-13 11:14:20 -06:00
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
if torch_device in ("mps", "cpu"):
expected_output_slice = torch.tensor(
[-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026]
)
else:
expected_output_slice = torch.tensor(
[-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485]
)
self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))