119 lines
3.9 KiB
Python
119 lines
3.9 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import torch
|
|
|
|
from diffusers import AutoencoderKL
|
|
from diffusers.modeling_utils import ModelMixin
|
|
from diffusers.testing_utils import floats_tensor, torch_device
|
|
|
|
from .test_modeling_common import ModelTesterMixin
|
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False
|
|
|
|
|
|
class AutoencoderKLTests(ModelTesterMixin, unittest.TestCase):
|
|
model_class = AutoencoderKL
|
|
|
|
@property
|
|
def dummy_input(self):
|
|
batch_size = 4
|
|
num_channels = 3
|
|
sizes = (32, 32)
|
|
|
|
image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
|
|
|
|
return {"sample": image}
|
|
|
|
@property
|
|
def input_shape(self):
|
|
return (3, 32, 32)
|
|
|
|
@property
|
|
def output_shape(self):
|
|
return (3, 32, 32)
|
|
|
|
def prepare_init_args_and_inputs_for_common(self):
|
|
init_dict = {
|
|
"block_out_channels": [32, 64],
|
|
"in_channels": 3,
|
|
"out_channels": 3,
|
|
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
"latent_channels": 4,
|
|
}
|
|
inputs_dict = self.dummy_input
|
|
return init_dict, inputs_dict
|
|
|
|
def test_forward_signature(self):
|
|
pass
|
|
|
|
def test_training(self):
|
|
pass
|
|
|
|
def test_from_pretrained_hub(self):
|
|
model, loading_info = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy", output_loading_info=True)
|
|
self.assertIsNotNone(model)
|
|
self.assertEqual(len(loading_info["missing_keys"]), 0)
|
|
|
|
model.to(torch_device)
|
|
image = model(**self.dummy_input)
|
|
|
|
assert image is not None, "Make sure output is not None"
|
|
|
|
def test_output_pretrained(self):
|
|
model = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy")
|
|
model = model.to(torch_device)
|
|
model.eval()
|
|
|
|
# One-time warmup pass (see #372)
|
|
if torch_device == "mps" and isinstance(model, ModelMixin):
|
|
image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
|
|
image = image.to(torch_device)
|
|
with torch.no_grad():
|
|
_ = model(image, sample_posterior=True).sample
|
|
generator = torch.manual_seed(0)
|
|
else:
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
|
|
image = torch.randn(
|
|
1,
|
|
model.config.in_channels,
|
|
model.config.sample_size,
|
|
model.config.sample_size,
|
|
generator=torch.manual_seed(0),
|
|
)
|
|
image = image.to(torch_device)
|
|
with torch.no_grad():
|
|
output = model(image, sample_posterior=True, generator=generator).sample
|
|
|
|
output_slice = output[0, -1, -3:, -3:].flatten().cpu()
|
|
|
|
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
|
|
# the expected output slices are not the same for CPU and GPU.
|
|
if torch_device in ("mps", "cpu"):
|
|
expected_output_slice = torch.tensor(
|
|
[-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026]
|
|
)
|
|
else:
|
|
expected_output_slice = torch.tensor(
|
|
[-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485]
|
|
)
|
|
|
|
self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
|