diffusers/tests/test_modeling_utils.py

247 lines
9.3 KiB
Python
Raw Normal View History

2022-05-31 06:27:59 -06:00
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import tempfile
import unittest
2022-06-06 09:03:41 -06:00
import os
from distutils.util import strtobool
2022-05-31 06:27:59 -06:00
import torch
2022-06-06 09:03:41 -06:00
from diffusers import GaussianDDPMScheduler, UNetModel
from diffusers.pipeline_utils import DiffusionPipeline
from models.vision.ddpm.modeling_ddpm import DDPM
2022-05-31 06:27:59 -06:00
global_rng = random.Random()
2022-06-06 09:03:41 -06:00
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
def parse_flag_from_env(key, default=False):
try:
value = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
_value = default
else:
# KEY is set, convert it to True or False.
try:
_value = strtobool(value)
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(f"If set, {key} must be yes or no.")
return _value
_run_slow_tests = parse_flag_from_env("RUN_SLOW", default=False)
def slow(test_case):
"""
Decorator marking a test as slow.
Slow tests are skipped by default. Set the RUN_SLOW environment variable to a truthy value to run them.
"""
return unittest.skipUnless(_run_slow_tests, "test is slow")(test_case)
2022-05-31 06:27:59 -06:00
def floats_tensor(shape, scale=1.0, rng=None, name=None):
"""Creates a random float32 tensor"""
if rng is None:
rng = global_rng
total_dims = 1
for dim in shape:
total_dims *= dim
values = []
for _ in range(total_dims):
values.append(rng.random() * scale)
return torch.tensor(data=values, dtype=torch.float).view(shape).contiguous()
class ModelTesterMixin(unittest.TestCase):
2022-05-31 06:46:20 -06:00
@property
def dummy_input(self):
2022-06-07 07:03:53 -06:00
batch_size = 4
2022-05-31 06:46:20 -06:00
num_channels = 3
sizes = (32, 32)
noise = floats_tensor((batch_size, num_channels) + sizes)
time_step = torch.tensor([10])
return (noise, time_step)
2022-05-31 06:27:59 -06:00
def test_from_pretrained_save_pretrained(self):
2022-06-06 09:03:41 -06:00
model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
2022-05-31 06:27:59 -06:00
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
new_model = UNetModel.from_pretrained(tmpdirname)
2022-05-31 06:46:20 -06:00
dummy_input = self.dummy_input
2022-05-31 06:27:59 -06:00
2022-05-31 06:46:20 -06:00
image = model(*dummy_input)
new_image = new_model(*dummy_input)
2022-05-31 06:27:59 -06:00
assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
2022-05-31 06:46:20 -06:00
def test_from_pretrained_hub(self):
model = UNetModel.from_pretrained("fusing/ddpm_dummy")
image = model(*self.dummy_input)
assert image is not None, "Make sure output is not None"
class SamplerTesterMixin(unittest.TestCase):
2022-06-06 09:03:41 -06:00
@slow
def test_sample(self):
generator = torch.Generator()
generator = generator.manual_seed(6694729458485568)
# 1. Load models
scheduler = GaussianDDPMScheduler.from_config("fusing/ddpm-lsun-church")
model = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device)
# 2. Sample gaussian noise
image = scheduler.sample_noise((1, model.in_channels, model.resolution, model.resolution), device=torch_device, generator=generator)
# 3. Denoise
for t in reversed(range(len(scheduler))):
# i) define coefficients for time step t
2022-06-07 08:34:44 -06:00
clipped_image_coeff = 1 / torch.sqrt(scheduler.get_alpha_prod(t))
clipped_noise_coeff = torch.sqrt(1 / scheduler.get_alpha_prod(t) - 1)
2022-06-06 09:03:41 -06:00
image_coeff = (1 - scheduler.get_alpha_prod(t - 1)) * torch.sqrt(scheduler.get_alpha(t)) / (1 - scheduler.get_alpha_prod(t))
2022-06-07 08:34:44 -06:00
clipped_coeff = torch.sqrt(scheduler.get_alpha_prod(t - 1)) * scheduler.get_beta(t) / (1 - scheduler.get_alpha_prod(t))
2022-06-06 09:03:41 -06:00
# ii) predict noise residual
with torch.no_grad():
noise_residual = model(image, t)
# iii) compute predicted image from residual
# See 2nd formula at https://github.com/hojonathanho/diffusion/issues/5#issue-896554416 for comparison
2022-06-07 08:34:44 -06:00
pred_mean = clipped_image_coeff * image - clipped_noise_coeff * noise_residual
2022-06-06 09:03:41 -06:00
pred_mean = torch.clamp(pred_mean, -1, 1)
2022-06-07 08:34:44 -06:00
prev_image = clipped_coeff * pred_mean + image_coeff * image
2022-06-06 09:03:41 -06:00
# iv) sample variance
prev_variance = scheduler.sample_variance(t, prev_image.shape, device=torch_device, generator=generator)
# v) sample x_{t-1} ~ N(prev_image, prev_variance)
sampled_prev_image = prev_image + prev_variance
image = sampled_prev_image
# Note: The better test is to simply check with the following lines of code that the image is sensible
# import PIL
# import numpy as np
# image_processed = image.cpu().permute(0, 2, 3, 1)
# image_processed = (image_processed + 1.0) * 127.5
# image_processed = image_processed.numpy().astype(np.uint8)
# image_pil = PIL.Image.fromarray(image_processed[0])
# image_pil.save("test.png")
assert image.shape == (1, 3, 256, 256)
image_slice = image[0, -1, -3:, -3:].cpu()
assert (image_slice - torch.tensor([[-0.0598, -0.0611, -0.0506], [-0.0726, 0.0220, 0.0103], [-0.0723, -0.1310, -0.2458]])).abs().sum() < 1e-3
def test_sample_fast(self):
# 1. Load models
generator = torch.Generator()
generator = generator.manual_seed(6694729458485568)
scheduler = GaussianDDPMScheduler.from_config("fusing/ddpm-lsun-church", timesteps=10)
model = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device)
# 2. Sample gaussian noise
torch.manual_seed(0)
2022-06-06 09:03:41 -06:00
image = scheduler.sample_noise((1, model.in_channels, model.resolution, model.resolution), device=torch_device, generator=generator)
# 3. Denoise
for t in reversed(range(len(scheduler))):
# i) define coefficients for time step t
2022-06-07 08:34:44 -06:00
clipped_image_coeff = 1 / torch.sqrt(scheduler.get_alpha_prod(t))
clipped_noise_coeff = torch.sqrt(1 / scheduler.get_alpha_prod(t) - 1)
2022-06-06 09:03:41 -06:00
image_coeff = (1 - scheduler.get_alpha_prod(t - 1)) * torch.sqrt(scheduler.get_alpha(t)) / (1 - scheduler.get_alpha_prod(t))
2022-06-07 08:34:44 -06:00
clipped_coeff = torch.sqrt(scheduler.get_alpha_prod(t - 1)) * scheduler.get_beta(t) / (1 - scheduler.get_alpha_prod(t))
2022-06-06 09:03:41 -06:00
# ii) predict noise residual
with torch.no_grad():
noise_residual = model(image, t)
# iii) compute predicted image from residual
# See 2nd formula at https://github.com/hojonathanho/diffusion/issues/5#issue-896554416 for comparison
2022-06-07 08:34:44 -06:00
pred_mean = clipped_image_coeff * image - clipped_noise_coeff * noise_residual
2022-06-06 09:03:41 -06:00
pred_mean = torch.clamp(pred_mean, -1, 1)
2022-06-07 08:34:44 -06:00
prev_image = clipped_coeff * pred_mean + image_coeff * image
2022-06-06 09:03:41 -06:00
# iv) sample variance
prev_variance = scheduler.sample_variance(t, prev_image.shape, device=torch_device, generator=generator)
# v) sample x_{t-1} ~ N(prev_image, prev_variance)
sampled_prev_image = prev_image + prev_variance
image = sampled_prev_image
assert image.shape == (1, 3, 256, 256)
image_slice = image[0, -1, -3:, -3:].cpu()
assert (image_slice - torch.tensor([[0.1746, 0.5125, -0.7920], [-0.5734, -0.2910, -0.1984], [0.4090, -0.7740, -0.3941]])).abs().sum() < 1e-3
class PipelineTesterMixin(unittest.TestCase):
def test_from_pretrained_save_pretrained(self):
# 1. Load models
model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
schedular = GaussianDDPMScheduler(timesteps=10)
ddpm = DDPM(model, schedular)
with tempfile.TemporaryDirectory() as tmpdirname:
ddpm.save_pretrained(tmpdirname)
new_ddpm = DDPM.from_pretrained(tmpdirname)
generator = torch.Generator()
generator = generator.manual_seed(669472945848556)
2022-06-07 07:43:08 -06:00
image = ddpm(generator=generator)
generator = generator.manual_seed(669472945848556)
2022-06-07 07:43:08 -06:00
new_image = new_ddpm(generator=generator)
assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
@slow
def test_from_pretrained_hub(self):
model_path = "fusing/ddpm-cifar10"
ddpm = DDPM.from_pretrained(model_path)
ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path)
ddpm.noise_scheduler.num_timesteps = 10
ddpm_from_hub.noise_scheduler.num_timesteps = 10
generator = torch.Generator(device=torch_device)
generator = generator.manual_seed(669472945848556)
2022-06-07 07:43:08 -06:00
image = ddpm(generator=generator)
generator = generator.manual_seed(669472945848556)
2022-06-07 07:43:08 -06:00
new_image = ddpm_from_hub(generator=generator)
assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"