2022-10-21 04:49:52 -06:00
|
|
|
# coding=utf-8
|
|
|
|
# Copyright 2022 HuggingFace Inc.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import gc
|
|
|
|
import random
|
|
|
|
import unittest
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from diffusers import (
|
|
|
|
AutoencoderKL,
|
2022-11-13 15:54:30 -07:00
|
|
|
DDIMScheduler,
|
2022-12-16 10:51:11 -07:00
|
|
|
DPMSolverMultistepScheduler,
|
2022-10-21 04:49:52 -06:00
|
|
|
LMSDiscreteScheduler,
|
|
|
|
PNDMScheduler,
|
|
|
|
StableDiffusionImg2ImgPipeline,
|
|
|
|
UNet2DConditionModel,
|
|
|
|
)
|
2022-12-16 10:51:11 -07:00
|
|
|
from diffusers.utils import floats_tensor, load_image, load_numpy, nightly, slow, torch_device
|
2022-10-24 08:34:01 -06:00
|
|
|
from diffusers.utils.testing_utils import require_torch_gpu
|
2022-12-13 04:50:15 -07:00
|
|
|
from transformers import CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
|
2022-10-21 04:49:52 -06:00
|
|
|
|
2022-10-24 08:34:01 -06:00
|
|
|
from ...test_pipelines_common import PipelineTesterMixin
|
|
|
|
|
2022-10-21 04:49:52 -06:00
|
|
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False
|
|
|
|
|
|
|
|
|
2022-10-24 08:34:01 -06:00
|
|
|
class StableDiffusionImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
2022-12-06 10:35:30 -07:00
|
|
|
pipeline_class = StableDiffusionImg2ImgPipeline
|
2022-10-21 04:49:52 -06:00
|
|
|
|
2022-12-06 10:35:30 -07:00
|
|
|
def get_dummy_components(self):
|
2022-10-21 04:49:52 -06:00
|
|
|
torch.manual_seed(0)
|
2022-12-06 10:35:30 -07:00
|
|
|
unet = UNet2DConditionModel(
|
2022-10-21 04:49:52 -06:00
|
|
|
block_out_channels=(32, 64),
|
|
|
|
layers_per_block=2,
|
|
|
|
sample_size=32,
|
|
|
|
in_channels=4,
|
|
|
|
out_channels=4,
|
|
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
|
|
cross_attention_dim=32,
|
|
|
|
)
|
2022-12-06 10:35:30 -07:00
|
|
|
scheduler = PNDMScheduler(skip_prk_steps=True)
|
2022-10-21 04:49:52 -06:00
|
|
|
torch.manual_seed(0)
|
2022-12-06 10:35:30 -07:00
|
|
|
vae = AutoencoderKL(
|
2022-10-21 04:49:52 -06:00
|
|
|
block_out_channels=[32, 64],
|
|
|
|
in_channels=3,
|
|
|
|
out_channels=3,
|
|
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
|
|
latent_channels=4,
|
|
|
|
)
|
|
|
|
torch.manual_seed(0)
|
2022-12-06 10:35:30 -07:00
|
|
|
text_encoder_config = CLIPTextConfig(
|
2022-10-21 04:49:52 -06:00
|
|
|
bos_token_id=0,
|
|
|
|
eos_token_id=2,
|
|
|
|
hidden_size=32,
|
|
|
|
intermediate_size=37,
|
|
|
|
layer_norm_eps=1e-05,
|
|
|
|
num_attention_heads=4,
|
|
|
|
num_hidden_layers=5,
|
|
|
|
pad_token_id=1,
|
|
|
|
vocab_size=1000,
|
|
|
|
)
|
2022-12-06 10:35:30 -07:00
|
|
|
text_encoder = CLIPTextModel(text_encoder_config)
|
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
2022-12-13 04:50:15 -07:00
|
|
|
feature_extractor = CLIPImageProcessor(crop_size=32, size=32)
|
2022-10-21 04:49:52 -06:00
|
|
|
|
2022-12-06 10:35:30 -07:00
|
|
|
components = {
|
|
|
|
"unet": unet,
|
|
|
|
"scheduler": scheduler,
|
|
|
|
"vae": vae,
|
|
|
|
"text_encoder": text_encoder,
|
|
|
|
"tokenizer": tokenizer,
|
|
|
|
"safety_checker": None,
|
2022-12-13 04:50:15 -07:00
|
|
|
"feature_extractor": feature_extractor,
|
2022-12-06 10:35:30 -07:00
|
|
|
}
|
|
|
|
return components
|
|
|
|
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
|
|
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
|
|
|
|
if str(device).startswith("mps"):
|
|
|
|
generator = torch.manual_seed(seed)
|
|
|
|
else:
|
|
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
|
inputs = {
|
|
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
|
|
"image": image,
|
|
|
|
"generator": generator,
|
|
|
|
"num_inference_steps": 2,
|
|
|
|
"guidance_scale": 6.0,
|
|
|
|
"output_type": "numpy",
|
|
|
|
}
|
|
|
|
return inputs
|
2022-10-21 04:49:52 -06:00
|
|
|
|
2022-11-04 10:54:01 -06:00
|
|
|
def test_stable_diffusion_img2img_default_case(self):
|
2022-10-21 04:49:52 -06:00
|
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
2022-12-06 10:35:30 -07:00
|
|
|
components = self.get_dummy_components()
|
|
|
|
sd_pipe = StableDiffusionImg2ImgPipeline(**components)
|
2022-10-21 04:49:52 -06:00
|
|
|
sd_pipe = sd_pipe.to(device)
|
|
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
|
2022-12-06 10:35:30 -07:00
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
|
|
image = sd_pipe(**inputs).images
|
2022-10-21 04:49:52 -06:00
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
|
|
|
|
assert image.shape == (1, 32, 32, 3)
|
|
|
|
expected_slice = np.array([0.4492, 0.3865, 0.4222, 0.5854, 0.5139, 0.4379, 0.4193, 0.48, 0.4218])
|
2022-11-04 10:54:01 -06:00
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
|
2022-10-21 04:49:52 -06:00
|
|
|
|
|
|
|
def test_stable_diffusion_img2img_negative_prompt(self):
|
|
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
2022-12-06 10:35:30 -07:00
|
|
|
components = self.get_dummy_components()
|
|
|
|
sd_pipe = StableDiffusionImg2ImgPipeline(**components)
|
2022-10-21 04:49:52 -06:00
|
|
|
sd_pipe = sd_pipe.to(device)
|
|
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
|
2022-12-06 10:35:30 -07:00
|
|
|
inputs = self.get_dummy_inputs(device)
|
2022-10-21 04:49:52 -06:00
|
|
|
negative_prompt = "french fries"
|
2022-12-06 10:35:30 -07:00
|
|
|
output = sd_pipe(**inputs, negative_prompt=negative_prompt)
|
2022-10-21 04:49:52 -06:00
|
|
|
image = output.images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
|
|
|
|
assert image.shape == (1, 32, 32, 3)
|
|
|
|
expected_slice = np.array([0.4065, 0.3783, 0.4050, 0.5266, 0.4781, 0.4252, 0.4203, 0.4692, 0.4365])
|
2022-11-04 10:54:01 -06:00
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
|
2022-10-21 04:49:52 -06:00
|
|
|
|
|
|
|
def test_stable_diffusion_img2img_multiple_init_images(self):
|
|
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
2022-12-06 10:35:30 -07:00
|
|
|
components = self.get_dummy_components()
|
|
|
|
sd_pipe = StableDiffusionImg2ImgPipeline(**components)
|
2022-10-21 04:49:52 -06:00
|
|
|
sd_pipe = sd_pipe.to(device)
|
|
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
|
2022-12-06 10:35:30 -07:00
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
|
|
inputs["prompt"] = [inputs["prompt"]] * 2
|
|
|
|
inputs["image"] = inputs["image"].repeat(2, 1, 1, 1)
|
|
|
|
image = sd_pipe(**inputs).images
|
2022-10-21 04:49:52 -06:00
|
|
|
image_slice = image[-1, -3:, -3:, -1]
|
|
|
|
|
|
|
|
assert image.shape == (2, 32, 32, 3)
|
|
|
|
expected_slice = np.array([0.5144, 0.4447, 0.4735, 0.6676, 0.5526, 0.5454, 0.645, 0.5149, 0.4689])
|
2022-11-04 10:54:01 -06:00
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
|
2022-10-21 04:49:52 -06:00
|
|
|
|
|
|
|
def test_stable_diffusion_img2img_k_lms(self):
|
|
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
2022-12-06 10:35:30 -07:00
|
|
|
components = self.get_dummy_components()
|
|
|
|
components["scheduler"] = LMSDiscreteScheduler(
|
|
|
|
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear"
|
2022-10-21 04:49:52 -06:00
|
|
|
)
|
2022-12-06 10:35:30 -07:00
|
|
|
sd_pipe = StableDiffusionImg2ImgPipeline(**components)
|
2022-10-21 04:49:52 -06:00
|
|
|
sd_pipe = sd_pipe.to(device)
|
|
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
|
2022-12-06 10:35:30 -07:00
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
|
|
image = sd_pipe(**inputs).images
|
2022-10-21 04:49:52 -06:00
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
|
|
|
|
assert image.shape == (1, 32, 32, 3)
|
|
|
|
expected_slice = np.array([0.4367, 0.4986, 0.4372, 0.6706, 0.5665, 0.444, 0.5864, 0.6019, 0.5203])
|
2022-11-04 10:54:01 -06:00
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
|
2022-10-21 04:49:52 -06:00
|
|
|
|
|
|
|
def test_stable_diffusion_img2img_num_images_per_prompt(self):
|
2022-12-06 10:35:30 -07:00
|
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
|
|
components = self.get_dummy_components()
|
|
|
|
sd_pipe = StableDiffusionImg2ImgPipeline(**components)
|
2022-10-21 04:49:52 -06:00
|
|
|
sd_pipe = sd_pipe.to(device)
|
|
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
|
|
|
|
# test num_images_per_prompt=1 (default)
|
2022-12-06 10:35:30 -07:00
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
|
|
images = sd_pipe(**inputs).images
|
2022-10-21 04:49:52 -06:00
|
|
|
|
|
|
|
assert images.shape == (1, 32, 32, 3)
|
|
|
|
|
|
|
|
# test num_images_per_prompt=1 (default) for batch of prompts
|
|
|
|
batch_size = 2
|
2022-12-06 10:35:30 -07:00
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
|
|
inputs["prompt"] = [inputs["prompt"]] * batch_size
|
|
|
|
images = sd_pipe(**inputs).images
|
2022-10-21 04:49:52 -06:00
|
|
|
|
|
|
|
assert images.shape == (batch_size, 32, 32, 3)
|
|
|
|
|
|
|
|
# test num_images_per_prompt for single prompt
|
|
|
|
num_images_per_prompt = 2
|
2022-12-06 10:35:30 -07:00
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
|
|
images = sd_pipe(**inputs, num_images_per_prompt=num_images_per_prompt).images
|
2022-10-21 04:49:52 -06:00
|
|
|
|
|
|
|
assert images.shape == (num_images_per_prompt, 32, 32, 3)
|
|
|
|
|
|
|
|
# test num_images_per_prompt for batch of prompts
|
|
|
|
batch_size = 2
|
2022-12-06 10:35:30 -07:00
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
|
|
inputs["prompt"] = [inputs["prompt"]] * batch_size
|
|
|
|
images = sd_pipe(**inputs, num_images_per_prompt=num_images_per_prompt).images
|
2022-10-21 04:49:52 -06:00
|
|
|
|
|
|
|
assert images.shape == (batch_size * num_images_per_prompt, 32, 32, 3)
|
|
|
|
|
|
|
|
|
|
|
|
@slow
|
2022-10-24 08:34:01 -06:00
|
|
|
@require_torch_gpu
|
2022-12-16 10:51:11 -07:00
|
|
|
class StableDiffusionImg2ImgPipelineSlowTests(unittest.TestCase):
|
2022-10-21 04:49:52 -06:00
|
|
|
def tearDown(self):
|
|
|
|
super().tearDown()
|
|
|
|
gc.collect()
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
2022-12-16 10:51:11 -07:00
|
|
|
def get_inputs(self, device, dtype=torch.float32, seed=0):
|
|
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
2022-10-21 04:49:52 -06:00
|
|
|
init_image = load_image(
|
2022-12-16 10:51:11 -07:00
|
|
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
|
|
|
|
"/stable_diffusion_img2img/sketch-mountains-input.png"
|
2022-11-04 10:54:01 -06:00
|
|
|
)
|
2022-12-16 10:51:11 -07:00
|
|
|
inputs = {
|
|
|
|
"prompt": "a fantasy landscape, concept art, high resolution",
|
|
|
|
"image": init_image,
|
|
|
|
"generator": generator,
|
|
|
|
"num_inference_steps": 3,
|
|
|
|
"strength": 0.75,
|
|
|
|
"guidance_scale": 7.5,
|
|
|
|
"output_type": "numpy",
|
|
|
|
}
|
|
|
|
return inputs
|
2022-10-21 04:49:52 -06:00
|
|
|
|
2022-12-16 10:51:11 -07:00
|
|
|
def test_stable_diffusion_img2img_default(self):
|
|
|
|
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
|
2022-10-21 04:49:52 -06:00
|
|
|
pipe.to(torch_device)
|
|
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
pipe.enable_attention_slicing()
|
|
|
|
|
2022-12-16 10:51:11 -07:00
|
|
|
inputs = self.get_inputs(torch_device)
|
|
|
|
image = pipe(**inputs).images
|
|
|
|
image_slice = image[0, -3:, -3:, -1].flatten()
|
2022-10-21 04:49:52 -06:00
|
|
|
|
2022-12-16 10:51:11 -07:00
|
|
|
assert image.shape == (1, 512, 768, 3)
|
|
|
|
expected_slice = np.array([0.27150, 0.14849, 0.15605, 0.26740, 0.16954, 0.18204, 0.31470, 0.26311, 0.24525])
|
|
|
|
assert np.abs(expected_slice - image_slice).max() < 1e-3
|
2022-10-21 04:49:52 -06:00
|
|
|
|
2022-12-16 10:51:11 -07:00
|
|
|
def test_stable_diffusion_img2img_k_lms(self):
|
|
|
|
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
|
|
|
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
|
2022-10-21 04:49:52 -06:00
|
|
|
pipe.to(torch_device)
|
|
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
pipe.enable_attention_slicing()
|
|
|
|
|
2022-12-16 10:51:11 -07:00
|
|
|
inputs = self.get_inputs(torch_device)
|
|
|
|
image = pipe(**inputs).images
|
|
|
|
image_slice = image[0, -3:, -3:, -1].flatten()
|
2022-11-13 15:54:30 -07:00
|
|
|
|
2022-12-16 10:51:11 -07:00
|
|
|
assert image.shape == (1, 512, 768, 3)
|
|
|
|
expected_slice = np.array([0.04890, 0.04862, 0.06422, 0.04655, 0.05108, 0.05307, 0.05926, 0.08759, 0.06852])
|
|
|
|
assert np.abs(expected_slice - image_slice).max() < 1e-3
|
2022-11-13 15:54:30 -07:00
|
|
|
|
2022-12-16 10:51:11 -07:00
|
|
|
def test_stable_diffusion_img2img_ddim(self):
|
|
|
|
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
|
|
|
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
2022-11-13 15:54:30 -07:00
|
|
|
pipe.to(torch_device)
|
|
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
pipe.enable_attention_slicing()
|
|
|
|
|
2022-12-16 10:51:11 -07:00
|
|
|
inputs = self.get_inputs(torch_device)
|
|
|
|
image = pipe(**inputs).images
|
|
|
|
image_slice = image[0, -3:, -3:, -1].flatten()
|
2022-11-13 15:54:30 -07:00
|
|
|
|
2022-12-16 10:51:11 -07:00
|
|
|
assert image.shape == (1, 512, 768, 3)
|
|
|
|
expected_slice = np.array([0.06069, 0.05703, 0.08054, 0.05797, 0.06286, 0.06234, 0.08438, 0.11151, 0.08068])
|
|
|
|
assert np.abs(expected_slice - image_slice).max() < 1e-3
|
2022-10-21 04:49:52 -06:00
|
|
|
|
|
|
|
def test_stable_diffusion_img2img_intermediate_state(self):
|
|
|
|
number_of_steps = 0
|
|
|
|
|
2022-12-16 10:51:11 -07:00
|
|
|
def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
|
|
|
|
callback_fn.has_been_called = True
|
2022-10-21 04:49:52 -06:00
|
|
|
nonlocal number_of_steps
|
|
|
|
number_of_steps += 1
|
2022-12-16 10:51:11 -07:00
|
|
|
if step == 1:
|
2022-10-21 04:49:52 -06:00
|
|
|
latents = latents.detach().cpu().numpy()
|
|
|
|
assert latents.shape == (1, 4, 64, 96)
|
|
|
|
latents_slice = latents[0, -3:, -3:, -1]
|
2022-12-16 10:51:11 -07:00
|
|
|
expected_slice = np.array([0.7705, 0.1045, 0.5, 3.393, 3.723, 4.273, 2.467, 3.486, 1.758])
|
2022-10-21 04:49:52 -06:00
|
|
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
|
2022-12-16 10:51:11 -07:00
|
|
|
elif step == 2:
|
2022-10-21 04:49:52 -06:00
|
|
|
latents = latents.detach().cpu().numpy()
|
|
|
|
assert latents.shape == (1, 4, 64, 96)
|
|
|
|
latents_slice = latents[0, -3:, -3:, -1]
|
2022-12-16 10:51:11 -07:00
|
|
|
expected_slice = np.array([0.765, 0.1047, 0.4973, 3.375, 3.709, 4.258, 2.451, 3.46, 1.755])
|
|
|
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
|
2022-10-21 04:49:52 -06:00
|
|
|
|
2022-12-16 10:51:11 -07:00
|
|
|
callback_fn.has_been_called = False
|
2022-10-21 04:49:52 -06:00
|
|
|
|
|
|
|
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
2022-12-16 10:51:11 -07:00
|
|
|
"CompVis/stable-diffusion-v1-4", safety_checker=None, revision="fp16", torch_dtype=torch.float16
|
2022-10-21 04:49:52 -06:00
|
|
|
)
|
2022-12-16 10:51:11 -07:00
|
|
|
pipe = pipe.to(torch_device)
|
2022-10-21 04:49:52 -06:00
|
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
pipe.enable_attention_slicing()
|
|
|
|
|
2022-12-16 10:51:11 -07:00
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16)
|
|
|
|
pipe(**inputs, callback=callback_fn, callback_steps=1)
|
|
|
|
assert callback_fn.has_been_called
|
|
|
|
assert number_of_steps == 2
|
2022-11-04 12:25:28 -06:00
|
|
|
|
|
|
|
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
torch.cuda.reset_max_memory_allocated()
|
2022-11-09 02:28:10 -07:00
|
|
|
torch.cuda.reset_peak_memory_stats()
|
2022-11-04 12:25:28 -06:00
|
|
|
|
|
|
|
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
2022-12-16 10:51:11 -07:00
|
|
|
"CompVis/stable-diffusion-v1-4", safety_checker=None, revision="fp16", torch_dtype=torch.float16
|
2022-11-04 12:25:28 -06:00
|
|
|
)
|
2022-12-16 10:51:11 -07:00
|
|
|
pipe = pipe.to(torch_device)
|
2022-11-04 12:25:28 -06:00
|
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
pipe.enable_attention_slicing(1)
|
|
|
|
pipe.enable_sequential_cpu_offload()
|
|
|
|
|
2022-12-16 10:51:11 -07:00
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16)
|
|
|
|
_ = pipe(**inputs)
|
2022-11-04 12:25:28 -06:00
|
|
|
|
|
|
|
mem_bytes = torch.cuda.max_memory_allocated()
|
2022-11-09 02:28:10 -07:00
|
|
|
# make sure that less than 2.2 GB is allocated
|
|
|
|
assert mem_bytes < 2.2 * 10**9
|
2022-12-16 10:51:11 -07:00
|
|
|
|
|
|
|
|
|
|
|
@nightly
|
|
|
|
@require_torch_gpu
|
|
|
|
class StableDiffusionImg2ImgPipelineNightlyTests(unittest.TestCase):
|
|
|
|
def tearDown(self):
|
|
|
|
super().tearDown()
|
|
|
|
gc.collect()
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
def get_inputs(self, device, dtype=torch.float32, seed=0):
|
|
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
|
init_image = load_image(
|
|
|
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
|
|
|
|
"/stable_diffusion_img2img/sketch-mountains-input.png"
|
|
|
|
)
|
|
|
|
inputs = {
|
|
|
|
"prompt": "a fantasy landscape, concept art, high resolution",
|
|
|
|
"image": init_image,
|
|
|
|
"generator": generator,
|
|
|
|
"num_inference_steps": 50,
|
|
|
|
"strength": 0.75,
|
|
|
|
"guidance_scale": 7.5,
|
|
|
|
"output_type": "numpy",
|
|
|
|
}
|
|
|
|
return inputs
|
|
|
|
|
|
|
|
def test_img2img_pndm(self):
|
|
|
|
sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
|
|
|
|
sd_pipe.to(torch_device)
|
|
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
|
|
image = sd_pipe(**inputs).images[0]
|
|
|
|
|
|
|
|
expected_image = load_numpy(
|
|
|
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
|
|
|
|
"/stable_diffusion_img2img/stable_diffusion_1_5_pndm.npy"
|
|
|
|
)
|
|
|
|
max_diff = np.abs(expected_image - image).max()
|
|
|
|
assert max_diff < 1e-3
|
|
|
|
|
|
|
|
def test_img2img_ddim(self):
|
|
|
|
sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
|
|
|
|
sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
|
|
|
|
sd_pipe.to(torch_device)
|
|
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
|
|
image = sd_pipe(**inputs).images[0]
|
|
|
|
|
|
|
|
expected_image = load_numpy(
|
|
|
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
|
|
|
|
"/stable_diffusion_img2img/stable_diffusion_1_5_ddim.npy"
|
|
|
|
)
|
|
|
|
max_diff = np.abs(expected_image - image).max()
|
|
|
|
assert max_diff < 1e-3
|
|
|
|
|
|
|
|
def test_img2img_lms(self):
|
|
|
|
sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
|
|
|
|
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
|
|
|
sd_pipe.to(torch_device)
|
|
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
|
|
image = sd_pipe(**inputs).images[0]
|
|
|
|
|
|
|
|
expected_image = load_numpy(
|
|
|
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
|
|
|
|
"/stable_diffusion_img2img/stable_diffusion_1_5_lms.npy"
|
|
|
|
)
|
|
|
|
max_diff = np.abs(expected_image - image).max()
|
|
|
|
assert max_diff < 1e-3
|
|
|
|
|
|
|
|
def test_img2img_dpm(self):
|
|
|
|
sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
|
|
|
|
sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
|
|
|
|
sd_pipe.to(torch_device)
|
|
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
|
|
inputs["num_inference_steps"] = 30
|
|
|
|
image = sd_pipe(**inputs).images[0]
|
|
|
|
|
|
|
|
expected_image = load_numpy(
|
|
|
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
|
|
|
|
"/stable_diffusion_img2img/stable_diffusion_1_5_dpm.npy"
|
|
|
|
)
|
|
|
|
max_diff = np.abs(expected_image - image).max()
|
|
|
|
assert max_diff < 1e-3
|