120 lines
4.1 KiB
Python
120 lines
4.1 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2022 HuggingFace Inc.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import unittest
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
|
||
|
from diffusers import DDIMScheduler, LDMPipeline, UNet2DModel, VQModel
|
||
|
from diffusers.utils.testing_utils import require_torch, slow, torch_device
|
||
|
from transformers import CLIPTextConfig, CLIPTextModel
|
||
|
|
||
|
from ...test_pipelines_common import PipelineTesterMixin
|
||
|
|
||
|
|
||
|
torch.backends.cuda.matmul.allow_tf32 = False
|
||
|
|
||
|
|
||
|
class LDMPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||
|
@property
|
||
|
def dummy_uncond_unet(self):
|
||
|
torch.manual_seed(0)
|
||
|
model = UNet2DModel(
|
||
|
block_out_channels=(32, 64),
|
||
|
layers_per_block=2,
|
||
|
sample_size=32,
|
||
|
in_channels=3,
|
||
|
out_channels=3,
|
||
|
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
|
||
|
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
|
||
|
)
|
||
|
return model
|
||
|
|
||
|
@property
|
||
|
def dummy_vq_model(self):
|
||
|
torch.manual_seed(0)
|
||
|
model = VQModel(
|
||
|
block_out_channels=[32, 64],
|
||
|
in_channels=3,
|
||
|
out_channels=3,
|
||
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
||
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
||
|
latent_channels=3,
|
||
|
)
|
||
|
return model
|
||
|
|
||
|
@property
|
||
|
def dummy_text_encoder(self):
|
||
|
torch.manual_seed(0)
|
||
|
config = CLIPTextConfig(
|
||
|
bos_token_id=0,
|
||
|
eos_token_id=2,
|
||
|
hidden_size=32,
|
||
|
intermediate_size=37,
|
||
|
layer_norm_eps=1e-05,
|
||
|
num_attention_heads=4,
|
||
|
num_hidden_layers=5,
|
||
|
pad_token_id=1,
|
||
|
vocab_size=1000,
|
||
|
)
|
||
|
return CLIPTextModel(config)
|
||
|
|
||
|
def test_inference_uncond(self):
|
||
|
unet = self.dummy_uncond_unet
|
||
|
scheduler = DDIMScheduler()
|
||
|
vae = self.dummy_vq_model
|
||
|
|
||
|
ldm = LDMPipeline(unet=unet, vqvae=vae, scheduler=scheduler)
|
||
|
ldm.to(torch_device)
|
||
|
ldm.set_progress_bar_config(disable=None)
|
||
|
|
||
|
# Warmup pass when using mps (see #372)
|
||
|
if torch_device == "mps":
|
||
|
generator = torch.manual_seed(0)
|
||
|
_ = ldm(generator=generator, num_inference_steps=1, output_type="numpy").images
|
||
|
|
||
|
generator = torch.manual_seed(0)
|
||
|
image = ldm(generator=generator, num_inference_steps=2, output_type="numpy").images
|
||
|
|
||
|
generator = torch.manual_seed(0)
|
||
|
image_from_tuple = ldm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0]
|
||
|
|
||
|
image_slice = image[0, -3:, -3:, -1]
|
||
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
|
||
|
|
||
|
assert image.shape == (1, 64, 64, 3)
|
||
|
expected_slice = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172])
|
||
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
||
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
|
||
|
|
||
|
|
||
|
@slow
|
||
|
@require_torch
|
||
|
class LDMPipelineIntegrationTests(unittest.TestCase):
|
||
|
def test_inference_uncond(self):
|
||
|
ldm = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256")
|
||
|
ldm.to(torch_device)
|
||
|
ldm.set_progress_bar_config(disable=None)
|
||
|
|
||
|
generator = torch.manual_seed(0)
|
||
|
image = ldm(generator=generator, num_inference_steps=5, output_type="numpy").images
|
||
|
|
||
|
image_slice = image[0, -3:, -3:, -1]
|
||
|
|
||
|
assert image.shape == (1, 256, 256, 3)
|
||
|
expected_slice = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447])
|
||
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|