[Flax] Complete tests (#828)

This commit is contained in:
Patrick von Platen 2022-10-13 18:18:32 +02:00 committed by GitHub
parent 7c2262640b
commit 1d51224403
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 50 additions and 9 deletions

View File

@ -24,7 +24,7 @@ from diffusers.utils.testing_utils import require_flax, slow
if is_flax_available(): if is_flax_available():
import jax import jax
import jax.numpy as jnp import jax.numpy as jnp
from diffusers import FlaxStableDiffusionPipeline from diffusers import FlaxDDIMScheduler, FlaxStableDiffusionPipeline
from flax.jax_utils import replicate from flax.jax_utils import replicate
from flax.training.common_utils import shard from flax.training.common_utils import shard
from jax import pmap from jax import pmap
@ -61,7 +61,7 @@ class FlaxPipelineTests(unittest.TestCase):
assert images.shape == (8, 1, 64, 64, 3) assert images.shape == (8, 1, 64, 64, 3)
assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 4.151474)) < 1e-3 assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 4.151474)) < 1e-3
assert np.abs((np.abs(images, dtype=np.float32).sum() - 49947.875)) < 1e-2 assert np.abs((np.abs(images, dtype=np.float32).sum() - 49947.875)) < 5e-1
images_pil = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) images_pil = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))
@ -93,13 +93,9 @@ class FlaxPipelineTests(unittest.TestCase):
images = p_sample(prompt_ids, params, prng_seed, num_inference_steps).images images = p_sample(prompt_ids, params, prng_seed, num_inference_steps).images
images_pil = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))
for i, image in enumerate(images_pil):
image.save(f"/home/patrick/images/flax-test-{i}_fp32.png")
assert images.shape == (8, 1, 512, 512, 3) assert images.shape == (8, 1, 512, 512, 3)
assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.05652401)) < 1e-3 assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.05652401)) < 1e-3
assert np.abs((np.abs(images, dtype=np.float32).sum() - 2383808.2)) < 1e-2 assert np.abs((np.abs(images, dtype=np.float32).sum() - 2383808.2)) < 5e-1
def test_stable_diffusion_v1_4_bfloat_16(self): def test_stable_diffusion_v1_4_bfloat_16(self):
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
@ -129,7 +125,7 @@ class FlaxPipelineTests(unittest.TestCase):
assert images.shape == (8, 1, 512, 512, 3) assert images.shape == (8, 1, 512, 512, 3)
assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.06652832)) < 1e-3 assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.06652832)) < 1e-3
assert np.abs((np.abs(images, dtype=np.float32).sum() - 2384849.8)) < 1e-2 assert np.abs((np.abs(images, dtype=np.float32).sum() - 2384849.8)) < 5e-1
def test_stable_diffusion_v1_4_bfloat_16_with_safety(self): def test_stable_diffusion_v1_4_bfloat_16_with_safety(self):
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
@ -157,4 +153,49 @@ class FlaxPipelineTests(unittest.TestCase):
assert images.shape == (8, 1, 512, 512, 3) assert images.shape == (8, 1, 512, 512, 3)
assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.06652832)) < 1e-3 assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.06652832)) < 1e-3
assert np.abs((np.abs(images, dtype=np.float32).sum() - 2384849.8)) < 1e-2 assert np.abs((np.abs(images, dtype=np.float32).sum() - 2384849.8)) < 5e-1
def test_stable_diffusion_v1_4_bfloat_16_ddim(self):
scheduler = FlaxDDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
set_alpha_to_one=False,
steps_offset=1,
)
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
revision="bf16",
dtype=jnp.bfloat16,
scheduler=scheduler,
safety_checker=None,
)
scheduler_state = scheduler.create_state()
params["scheduler"] = scheduler_state
prompt = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 50
num_samples = jax.device_count()
prompt = num_samples * [prompt]
prompt_ids = pipeline.prepare_inputs(prompt)
p_sample = pmap(pipeline.__call__, static_broadcasted_argnums=(3,))
# shard inputs and rng
params = replicate(params)
prng_seed = jax.random.split(prng_seed, 8)
prompt_ids = shard(prompt_ids)
images = p_sample(prompt_ids, params, prng_seed, num_inference_steps).images
assert images.shape == (8, 1, 512, 512, 3)
assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.045043945)) < 1e-3
assert np.abs((np.abs(images, dtype=np.float32).sum() - 2347693.5)) < 5e-1