Conversion script for ncsnpp models (#98)

* added kwargs for easier intialisation of random model

* initial commit for conversion script

* current debug script

* update

* Update

* done

* add updated debug conversion script

* style

* clean conversion script
This commit is contained in:
Arthur 2022-07-19 12:19:36 +02:00 committed by GitHub
parent 182b164f32
commit f794432e81
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 254 additions and 66 deletions

View File

@ -1,86 +1,110 @@
#!/usr/bin/env python3
import json
import os
from regex import P
from diffusers import UNetUnconditionalModel
from scripts.convert_ldm_original_checkpoint_to_diffusers import convert_ldm_checkpoint
from scripts.convert_ncsnpp_original_checkpoint_to_diffusers import convert_ncsnpp_checkpoint
from huggingface_hub import hf_hub_download
import torch
model_id = "fusing/latent-diffusion-celeba-256"
subfolder = "unet"
#model_id = "fusing/unet-ldm-dummy"
#subfolder = None
checkpoint = "diffusion_model.pt"
config = "config.json"
if subfolder is not None:
checkpoint = os.path.join(subfolder, checkpoint)
config = os.path.join(subfolder, config)
original_checkpoint = torch.load(hf_hub_download(model_id, checkpoint))
config_path = hf_hub_download(model_id, config)
with open(config_path) as f:
config = json.load(f)
checkpoint = convert_ldm_checkpoint(original_checkpoint, config)
def current_codebase_conversion():
model = UNetUnconditionalModel.from_pretrained(model_id, subfolder=subfolder, ldm=True)
model.eval()
def convert_checkpoint(model_id, subfolder=None, checkpoint = "diffusion_model.pt", config = "config.json"):
if subfolder is not None:
checkpoint = os.path.join(subfolder, checkpoint)
config = os.path.join(subfolder, config)
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
original_checkpoint = torch.load(hf_hub_download(model_id, checkpoint),map_location='cpu')
config_path = hf_hub_download(model_id, config)
noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size)
time_step = torch.tensor([10] * noise.shape[0])
with open(config_path) as f:
config = json.load(f)
with torch.no_grad():
output = model(noise, time_step)
return model.state_dict()
checkpoint = convert_ncsnpp_checkpoint(original_checkpoint, config)
currently_converted_checkpoint = current_codebase_conversion()
def current_codebase_conversion(path):
model = UNetUnconditionalModel.from_pretrained(model_id, subfolder=subfolder, sde=True)
model.eval()
model.config.sde=False
model.save_config(path)
model.config.sde=True
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size)
time_step = torch.tensor([10] * noise.shape[0])
with torch.no_grad():
output = model(noise, time_step)
return model.state_dict()
path = f"{model_id}_converted"
currently_converted_checkpoint = current_codebase_conversion(path)
def diff_between_checkpoints(ch_0, ch_1):
all_layers_included = False
def diff_between_checkpoints(ch_0, ch_1):
all_layers_included = False
if not set(ch_0.keys()) == set(ch_1.keys()):
print(f"Contained in ch_0 and not in ch_1 (Total: {len((set(ch_0.keys()) - set(ch_1.keys())))})")
for key in sorted(list((set(ch_0.keys()) - set(ch_1.keys())))):
print(f"\t{key}")
if not set(ch_0.keys()) == set(ch_1.keys()):
print(f"Contained in ch_0 and not in ch_1 (Total: {len((set(ch_0.keys()) - set(ch_1.keys())))})")
for key in sorted(list((set(ch_0.keys()) - set(ch_1.keys())))):
print(f"\t{key}")
print(f"Contained in ch_1 and not in ch_0 (Total: {len((set(ch_1.keys()) - set(ch_0.keys())))})")
for key in sorted(list((set(ch_1.keys()) - set(ch_0.keys())))):
print(f"\t{key}")
else:
print("Keys are the same between the two checkpoints")
all_layers_included = True
keys = ch_0.keys()
non_equal_keys = []
if all_layers_included:
for key in keys:
try:
if not torch.allclose(ch_0[key].cpu(), ch_1[key].cpu()):
non_equal_keys.append(f'{key}. Diff: {torch.max(torch.abs(ch_0[key].cpu() - ch_1[key].cpu()))}')
except RuntimeError as e:
print(e)
non_equal_keys.append(f'{key}. Diff in shape: {ch_0[key].size()} vs {ch_1[key].size()}')
if len(non_equal_keys):
non_equal_keys = '\n\t'.join(non_equal_keys)
print(f"These keys do not satisfy equivalence requirement:\n\t{non_equal_keys}")
print(f"Contained in ch_1 and not in ch_0 (Total: {len((set(ch_1.keys()) - set(ch_0.keys())))})")
for key in sorted(list((set(ch_1.keys()) - set(ch_0.keys())))):
print(f"\t{key}")
else:
print("All keys are equal across checkpoints.")
print("Keys are the same between the two checkpoints")
all_layers_included = True
keys = ch_0.keys()
non_equal_keys = []
if all_layers_included:
for key in keys:
try:
if not torch.allclose(ch_0[key].cpu(), ch_1[key].cpu()):
non_equal_keys.append(f'{key}. Diff: {torch.max(torch.abs(ch_0[key].cpu() - ch_1[key].cpu()))}')
except RuntimeError as e:
print(e)
non_equal_keys.append(f'{key}. Diff in shape: {ch_0[key].size()} vs {ch_1[key].size()}')
if len(non_equal_keys):
non_equal_keys = '\n\t'.join(non_equal_keys)
print(f"These keys do not satisfy equivalence requirement:\n\t{non_equal_keys}")
else:
print("All keys are equal across checkpoints.")
diff_between_checkpoints(currently_converted_checkpoint, checkpoint)
torch.save(checkpoint, "/path/to/checkpoint/")
diff_between_checkpoints(currently_converted_checkpoint, checkpoint)
os.makedirs( f"{model_id}_converted",exist_ok =True)
torch.save(checkpoint, f"{model_id}_converted/diffusion_model.pt")
model_ids = ["fusing/ffhq_ncsnpp","fusing/church_256-ncsnpp-ve", "fusing/celebahq_256-ncsnpp-ve",
"fusing/bedroom_256-ncsnpp-ve","fusing/ffhq_256-ncsnpp-ve","fusing/ncsnpp-ffhq-ve-dummy"
]
for model in model_ids:
print(f"converting {model}")
try:
convert_checkpoint(model)
except Exception as e:
print(e)
from tests.test_modeling_utils import PipelineTesterMixin, NCSNppModelTests
tester1 = NCSNppModelTests()
tester2 = PipelineTesterMixin()
os.environ["RUN_SLOW"] = '1'
cmd = "export RUN_SLOW=1; echo $RUN_SLOW" # or whatever command
os.system(cmd)
tester2.test_score_sde_ve_pipeline(f"{model_ids[0]}_converted")
tester1.test_output_pretrained_ve_mid(f"{model_ids[2]}_converted")
tester1.test_output_pretrained_ve_large(f"{model_ids[-1]}_converted")

View File

@ -0,0 +1,164 @@
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Conversion script for the NCSNPP checkpoints. """
import argparse
import json
import torch
from diffusers import UNetUnconditionalModel
def convert_ncsnpp_checkpoint(checkpoint, config):
"""
Takes a state dict and the path to
"""
new_model_architecture = UNetUnconditionalModel(**config)
new_model_architecture.time_steps.W.data= checkpoint['all_modules.0.W'].data
new_model_architecture.time_steps.weight.data = checkpoint['all_modules.0.W'].data
new_model_architecture.time_embedding.linear_1.weight.data = checkpoint['all_modules.1.weight'].data
new_model_architecture.time_embedding.linear_1.bias.data = checkpoint['all_modules.1.bias'].data
new_model_architecture.time_embedding.linear_2.weight.data = checkpoint['all_modules.2.weight'].data
new_model_architecture.time_embedding.linear_2.bias.data= checkpoint['all_modules.2.bias'].data
new_model_architecture.conv_in.weight.data = checkpoint['all_modules.3.weight'].data
new_model_architecture.conv_in.bias.data = checkpoint['all_modules.3.bias'].data
new_model_architecture.conv_norm_out.weight.data = checkpoint[list(checkpoint.keys())[-4]].data
new_model_architecture.conv_norm_out.bias.data = checkpoint[list(checkpoint.keys())[-3]].data
new_model_architecture.conv_out.weight.data = checkpoint[list(checkpoint.keys())[-2]].data
new_model_architecture.conv_out.bias.data = checkpoint[list(checkpoint.keys())[-1]].data
module_index = 4
def set_attention_weights(new_layer,old_checkpoint,index):
new_layer.query.weight.data = old_checkpoint[f"all_modules.{index}.NIN_0.W"].data.T
new_layer.key.weight.data = old_checkpoint[f"all_modules.{index}.NIN_1.W"].data.T
new_layer.value.weight.data = old_checkpoint[f"all_modules.{index}.NIN_2.W"].data.T
new_layer.query.bias.data = old_checkpoint[f"all_modules.{index}.NIN_0.b"].data
new_layer.key.bias.data = old_checkpoint[f"all_modules.{index}.NIN_1.b"].data
new_layer.value.bias.data = old_checkpoint[f"all_modules.{index}.NIN_2.b"].data
new_layer.proj_attn.weight.data = old_checkpoint[f"all_modules.{index}.NIN_3.W"].data.T
new_layer.proj_attn.bias.data = old_checkpoint[f"all_modules.{index}.NIN_3.b"].data
new_layer.group_norm.weight.data = old_checkpoint[f"all_modules.{index}.GroupNorm_0.weight"].data
new_layer.group_norm.bias.data = old_checkpoint[f"all_modules.{index}.GroupNorm_0.bias"].data
def set_resnet_weights(new_layer,old_checkpoint,index):
new_layer.conv1.weight.data = old_checkpoint[f"all_modules.{index}.Conv_0.weight"].data
new_layer.conv1.bias.data = old_checkpoint[f"all_modules.{index}.Conv_0.bias"].data
new_layer.norm1.weight.data = old_checkpoint[f"all_modules.{index}.GroupNorm_0.weight"].data
new_layer.norm1.bias.data = old_checkpoint[f"all_modules.{index}.GroupNorm_0.bias"].data
new_layer.conv2.weight.data = old_checkpoint[f"all_modules.{index}.Conv_1.weight"].data
new_layer.conv2.bias.data = old_checkpoint[f"all_modules.{index}.Conv_1.bias"].data
new_layer.norm2.weight.data = old_checkpoint[f"all_modules.{index}.GroupNorm_1.weight"].data
new_layer.norm2.bias.data = old_checkpoint[f"all_modules.{index}.GroupNorm_1.bias"].data
new_layer.time_emb_proj.weight.data = old_checkpoint[f"all_modules.{index}.Dense_0.weight"].data
new_layer.time_emb_proj.bias.data = old_checkpoint[f"all_modules.{index}.Dense_0.bias"].data
if new_layer.in_channels != new_layer.out_channels or new_layer.up or new_layer.down:
new_layer.conv_shortcut.weight.data = old_checkpoint[f"all_modules.{index}.Conv_2.weight"].data
new_layer.conv_shortcut.bias.data = old_checkpoint[f"all_modules.{index}.Conv_2.bias"].data
for i, block in enumerate(new_model_architecture.downsample_blocks):
has_attentions = hasattr(block, "attentions")
for j in range(len(block.resnets)):
set_resnet_weights(block.resnets[j],checkpoint, module_index)
module_index += 1
if has_attentions:
set_attention_weights(block.attentions[j],checkpoint, module_index)
module_index += 1
if hasattr(block, "downsamplers") and block.downsamplers is not None:
set_resnet_weights(block.resnet_down,checkpoint, module_index)
module_index += 1
block.skip_conv.weight.data = checkpoint[f"all_modules.{module_index}.Conv_0.weight"].data
block.skip_conv.bias.data = checkpoint[f"all_modules.{module_index}.Conv_0.bias"].data
module_index += 1
set_resnet_weights(new_model_architecture.mid.resnets[0],checkpoint,module_index)
module_index += 1
set_attention_weights(new_model_architecture.mid.attentions[0],checkpoint, module_index)
module_index += 1
set_resnet_weights(new_model_architecture.mid.resnets[1],checkpoint,module_index)
module_index += 1
for i, block in enumerate(new_model_architecture.upsample_blocks):
has_attentions = hasattr(block, "attentions")
for j in range(len(block.resnets)):
set_resnet_weights(block.resnets[j],checkpoint, module_index)
module_index += 1
if has_attentions:
set_attention_weights(block.attentions[0],checkpoint, module_index) # why can there only be a single attention layer for up?
module_index += 1
if hasattr(block, "resnet_up") and block.resnet_up is not None:
block.skip_norm.weight.data = checkpoint[f"all_modules.{module_index}.weight"].data
block.skip_norm.bias.data = checkpoint[f"all_modules.{module_index}.bias"].data
module_index += 1
block.skip_conv.weight.data = checkpoint[f"all_modules.{module_index}.weight"].data
block.skip_conv.bias.data = checkpoint[f"all_modules.{module_index}.bias"].data
module_index += 1
set_resnet_weights(block.resnet_up,checkpoint, module_index)
module_index += 1
new_model_architecture.conv_norm_out.weight.data = checkpoint[f"all_modules.{module_index}.weight"].data
new_model_architecture.conv_norm_out.bias.data = checkpoint[f"all_modules.{module_index}.bias"].data
module_index += 1
new_model_architecture.conv_out.weight.data = checkpoint[f"all_modules.{module_index}.weight"].data
new_model_architecture.conv_out.bias.data = checkpoint[f"all_modules.{module_index}.bias"].data
return new_model_architecture.state_dict()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_path", default="/Users/arthurzucker/Work/diffusers/ArthurZ/diffusion_model.pt", type=str, required=False, help="Path to the checkpoint to convert."
)
parser.add_argument(
"--config_file",
default="/Users/arthurzucker/Work/diffusers/ArthurZ/config.json",
type=str,
required=False,
help="The config json file corresponding to the architecture.",
)
parser.add_argument(
"--dump_path", default="/Users/arthurzucker/Work/diffusers/ArthurZ/diffusion_model_new.pt", type=str, required=False, help="Path to the output model."
)
args = parser.parse_args()
checkpoint = torch.load(args.checkpoint_path, map_location="cpu")
with open(args.config_file) as f:
config = json.loads(f.read())
converted_checkpoint = convert_ncsnpp_checkpoint(checkpoint, config,)
torch.save(converted_checkpoint, args.dump_path)

View File

@ -152,6 +152,7 @@ class UNetUnconditionalModel(ModelMixin, ConfigMixin):
progressive_input="input_skip",
resnet_num_groups=32,
continuous=True,
**kwargs,
):
super().__init__()
# register all __init__ params to be accessible via `self.config.<...>`
@ -454,7 +455,6 @@ class UNetUnconditionalModel(ModelMixin, ConfigMixin):
# 5. up
skip_sample = None
for upsample_block in self.upsample_blocks:
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]