diffusers/README.md

213 lines
7.6 KiB
Markdown

# Diffusers
## Definitions
**Models**: Single neural network that models p_θ(x_t-1|x_t) and is trained to “denoise” to image
*Examples: UNet, Conditioned UNet, 3D UNet, Transformer UNet*
![model_diff_1_50](https://user-images.githubusercontent.com/23423619/171610307-dab0cd8b-75da-4d4e-9f5a-5922072e2bb5.png)
**Schedulers**: Algorithm to compute previous image according to alpha, beta schedule and to sample noise. Should be used for both *training* and *inference*.
*Example: Gaussian DDPM, DDIM, PMLS, DEIN*
![sampling](https://user-images.githubusercontent.com/23423619/171608981-3ad05953-a684-4c82-89f8-62a459147a07.png)
![training](https://user-images.githubusercontent.com/23423619/171608964-b3260cce-e6b4-4841-959d-7d8ba4b8d1b2.png)
**Diffusion Pipeline**: End-to-end pipeline that includes multiple diffusion models, possible text encoders, CLIP
*Example: GLIDE,CompVis/Latent-Diffusion, Imagen, DALL-E*
![imagen](https://user-images.githubusercontent.com/23423619/171609001-c3f2c1c9-f597-4a16-9843-749bf3f9431c.png)
## Quickstart
```
git clone https://github.com/huggingface/diffusers.git
cd diffusers && pip install -e .
```
### 1. `diffusers` as a central modular diffusion and sampler library
`diffusers` is more modularized than `transformers`. The idea is that researchers and engineers can use only parts of the library easily for the own use cases.
It could become a central place for all kinds of models, schedulers, training utils and processors that one can mix and match for one's own use case.
Both models and schedulers should be load- and saveable from the Hub.
**Example for [DDPM](https://arxiv.org/abs/2006.11239):**
```python
import torch
from diffusers import UNetModel, GaussianDDPMScheduler
import PIL
import numpy as np
import tqdm
generator = torch.manual_seed(0)
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
# 1. Load models
noise_scheduler = GaussianDDPMScheduler.from_config("fusing/ddpm-lsun-church")
unet = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device)
# 2. Sample gaussian noise
image = noise_scheduler.sample_noise((1, unet.in_channels, unet.resolution, unet.resolution), device=torch_device, generator=generator)
# 3. Denoise
num_prediction_steps = len(noise_scheduler)
for t in tqdm.tqdm(reversed(range(num_prediction_steps)), total=num_prediction_steps):
# predict noise residual
with torch.no_grad():
residual = unet(image, t)
# predict previous mean of image x_t-1
pred_prev_image = noise_scheduler.compute_prev_image_step(residual, image, t)
# optionally sample variance
variance = 0
if t > 0:
noise = noise_scheduler.sample_noise(image.shape, device=image.device, generator=generator)
variance = noise_scheduler.get_variance(t).sqrt() * noise
# set current image to prev_image: x_t -> x_t-1
image = pred_prev_image + variance
# 5. process image to PIL
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])
# 6. save image
image_pil.save("test.png")
```
**Example for [DDIM](https://arxiv.org/abs/2010.02502):**
```python
import torch
from diffusers import UNetModel, DDIMScheduler
import PIL
import numpy as np
import tqdm
generator = torch.manual_seed(0)
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
# 1. Load models
noise_scheduler = DDIMScheduler.from_config("fusing/ddpm-celeba-hq")
unet = UNetModel.from_pretrained("fusing/ddpm-celeba-hq").to(torch_device)
# 2. Sample gaussian noise
image = noise_scheduler.sample_noise((1, unet.in_channels, unet.resolution, unet.resolution), device=torch_device, generator=generator)
# 3. Denoise
num_inference_steps = 50
eta = 0.0 # <- deterministic sampling
for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps):
# 1. predict noise residual
orig_t = noise_scheduler.get_orig_t(t, num_inference_steps)
with torch.no_grad():
residual = unet(image, orig_t)
# 2. predict previous mean of image x_t-1
pred_prev_image = noise_scheduler.compute_prev_image_step(residual, image, t, num_inference_steps, eta)
# 3. optionally sample variance
variance = 0
if eta > 0:
noise = noise_scheduler.sample_noise(image.shape, device=image.device, generator=generator)
variance = noise_scheduler.get_variance(t).sqrt() * eta * noise
# 4. set current image to prev_image: x_t -> x_t-1
image = pred_prev_image + variance
# 5. process image to PIL
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])
# 6. save image
image_pil.save("test.png")
```
### 2. `diffusers` as a collection of most important Diffusion systems (GLIDE, Dalle, ...)
`models` directory in repository hosts the complete code necessary for running a diffusion system as well as to train it. A `DiffusionPipeline` class allows to easily run the diffusion model in inference:
**Example image generation with DDPM**
```python
from diffusers import DiffusionPipeline
import PIL.Image
import numpy as np
# load model and scheduler
ddpm = DiffusionPipeline.from_pretrained("fusing/ddpm-lsun-bedroom")
# run pipeline in inference (sample random noise and denoise)
image = ddpm()
# process image to PIL
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])
# save image
image_pil.save("test.png")
```
## Library structure:
```
├── models
│   ├── audio
│   │   └── fastdiff
│   │   ├── modeling_fastdiff.py
│   │   ├── README.md
│   │   └── run_fastdiff.py
│   ├── __init__.py
│   └── vision
│   ├── dalle2
│   │   ├── modeling_dalle2.py
│   │   ├── README.md
│   │   └── run_dalle2.py
│   ├── ddpm
│   │   ├── example.py
│   │   ├── modeling_ddpm.py
│   │   ├── README.md
│   │   └── run_ddpm.py
│   ├── glide
│   │   ├── modeling_glide.py
│   │   ├── modeling_vqvae.py.py
│   │   ├── README.md
│   │   └── run_glide.py
│   ├── imagen
│   │   ├── modeling_dalle2.py
│   │   ├── README.md
│   │   └── run_dalle2.py
│   ├── __init__.py
│   └── latent_diffusion
│   ├── modeling_latent_diffusion.py
│   ├── README.md
│   └── run_latent_diffusion.py
├── pyproject.toml
├── README.md
├── setup.cfg
├── setup.py
├── src
│   └── diffusers
│   ├── configuration_utils.py
│   ├── __init__.py
│   ├── modeling_utils.py
│   ├── models
│   │   ├── __init__.py
│   │   ├── unet_glide.py
│   │   └── unet.py
│   ├── pipeline_utils.py
│   └── schedulers
│   ├── gaussian_ddpm.py
│   ├── __init__.py
├── tests
│   └── test_modeling_utils.py
```