d81b56ba5c | ||
---|---|---|
src/diffusers | ||
tests | ||
utils | ||
.gitignore | ||
LICENSE | ||
Makefile | ||
README.md | ||
pyproject.toml | ||
run_pndm.py | ||
setup.cfg | ||
setup.py |
README.md
Diffusers
Definitions
Models: Single neural network that models p_θ(x_t-1|x_t) and is trained to “denoise” to image Examples: UNet, Conditioned UNet, 3D UNet, Transformer UNet
Schedulers: Algorithm to compute previous image according to alpha, beta schedule and to sample noise. Should be used for both training and inference. Example: Gaussian DDPM, DDIM, PMLS, DEIN
Diffusion Pipeline: End-to-end pipeline that includes multiple diffusion models, possible text encoders, CLIP Example: GLIDE,CompVis/Latent-Diffusion, Imagen, DALL-E
Quickstart
git clone https://github.com/huggingface/diffusers.git
cd diffusers && pip install -e .
1. diffusers
as a central modular diffusion and sampler library
diffusers
is more modularized than transformers
. The idea is that researchers and engineers can use only parts of the library easily for the own use cases.
It could become a central place for all kinds of models, schedulers, training utils and processors that one can mix and match for one's own use case.
Both models and schedulers should be load- and saveable from the Hub.
Example for DDPM:
import torch
from diffusers import UNetModel, DDPMScheduler
import PIL
import numpy as np
import tqdm
generator = torch.manual_seed(0)
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
# 1. Load models
noise_scheduler = DDPMScheduler.from_config("fusing/ddpm-lsun-church", tensor_format="pt")
unet = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device)
# 2. Sample gaussian noise
image = torch.randn(
(1, unet.in_channels, unet.resolution, unet.resolution),
generator=generator,
)
image = image.to(torch_device)
# 3. Denoise
num_prediction_steps = len(noise_scheduler)
for t in tqdm.tqdm(reversed(range(num_prediction_steps)), total=num_prediction_steps):
# predict noise residual
with torch.no_grad():
residual = unet(image, t)
# predict previous mean of image x_t-1
pred_prev_image = noise_scheduler.step(residual, image, t)
# optionally sample variance
variance = 0
if t > 0:
noise = torch.randn(image.shape, generator=generator).to(image.device)
variance = noise_scheduler.get_variance(t).sqrt() * noise
# set current image to prev_image: x_t -> x_t-1
image = pred_prev_image + variance
# 5. process image to PIL
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])
# 6. save image
image_pil.save("test.png")
Example for DDIM:
import torch
from diffusers import UNetModel, DDIMScheduler
import PIL
import numpy as np
import tqdm
generator = torch.manual_seed(0)
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
# 1. Load models
noise_scheduler = DDIMScheduler.from_config("fusing/ddpm-celeba-hq", tensor_format="pt")
unet = UNetModel.from_pretrained("fusing/ddpm-celeba-hq").to(torch_device)
# 2. Sample gaussian noise
image = torch.randn(
(1, unet.in_channels, unet.resolution, unet.resolution),
generator=generator,
)
image = image.to(torch_device)
# 3. Denoise
num_inference_steps = 50
eta = 0.0 # <- deterministic sampling
for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps):
# 1. predict noise residual
orig_t = noise_scheduler.get_orig_t(t, num_inference_steps)
with torch.no_grad():
residual = unet(image, orig_t)
# 2. predict previous mean of image x_t-1
pred_prev_image = noise_scheduler.step(residual, image, t, num_inference_steps, eta)
# 3. optionally sample variance
variance = 0
if eta > 0:
noise = torch.randn(image.shape, generator=generator).to(image.device)
variance = noise_scheduler.get_variance(t).sqrt() * eta * noise
# 4. set current image to prev_image: x_t -> x_t-1
image = pred_prev_image + variance
# 5. process image to PIL
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])
# 6. save image
image_pil.save("test.png")
2. diffusers
as a collection of most important Diffusion systems (GLIDE, Dalle, ...)
models
directory in repository hosts the complete code necessary for running a diffusion system as well as to train it. A DiffusionPipeline
class allows to easily run the diffusion model in inference:
Example image generation with DDPM
from diffusers import DiffusionPipeline
import PIL.Image
import numpy as np
# load model and scheduler
ddpm = DiffusionPipeline.from_pretrained("fusing/ddpm-lsun-bedroom")
# run pipeline in inference (sample random noise and denoise)
image = ddpm()
# process image to PIL
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])
# save image
image_pil.save("test.png")
Text to Image generation with Latent Diffusion
from diffusers import DiffusionPipeline
ldm = DiffusionPipeline.from_pretrained("fusing/latent-diffusion-text2im-large")
generator = torch.Generator()
generator = generator.manual_seed(6694729458485568)
prompt = "A painting of a squirrel eating a burger"
image = ldm([prompt], generator=generator, eta=0.3, guidance_scale=6.0, num_inference_steps=50)
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = image_processed * 255.
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])
# save image
image_pil.save("test.png")
Text to speech with BDDM
Follow the isnstructions here to load tacotron2 model.
import torch
from diffusers import BDDM, DiffusionPipeline
torch_device = "cuda"
# load the BDDM pipeline
bddm = DiffusionPipeline.from_pretrained("fusing/diffwave-vocoder")
# load tacotron2 to get the mel spectograms
tacotron2 = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_tacotron2', model_math='fp16')
tacotron2 = tacotron2.to(torch_device).eval()
text = "Hello world, I missed you so much."
utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_tts_utils')
sequences, lengths = utils.prepare_input_sequence([text])
# generate mel spectograms using text
with torch.no_grad():
mel_spec, _, _ = tacotron2.infer(sequences, lengths)
# generate the speech by passing mel spectograms to BDDM pipeline
generator = torch.manual_seed(0)
audio = bddm(mel_spec, generator, torch_device)
# save generated audio
from scipy.io.wavfile import write as wavwrite
sampling_rate = 22050
wavwrite("generated_audio.wav", sampling_rate, audio.squeeze().cpu().numpy())
Library structure:
├── LICENSE
├── Makefile
├── README.md
├── pyproject.toml
├── setup.cfg
├── setup.py
├── src
│ ├── diffusers
│ ├── __init__.py
│ ├── configuration_utils.py
│ ├── dependency_versions_check.py
│ ├── dependency_versions_table.py
│ ├── dynamic_modules_utils.py
│ ├── modeling_utils.py
│ ├── models
│ │ ├── __init__.py
│ │ ├── unet.py
│ │ ├── unet_glide.py
│ │ └── unet_ldm.py
│ ├── pipeline_utils.py
│ ├── pipelines
│ │ ├── __init__.py
│ │ ├── configuration_ldmbert.py
│ │ ├── conversion_glide.py
│ │ ├── modeling_vae.py
│ │ ├── pipeline_bddm.py
│ │ ├── pipeline_ddim.py
│ │ ├── pipeline_ddpm.py
│ │ ├── pipeline_glide.py
│ │ └── pipeline_latent_diffusion.py
│ ├── schedulers
│ │ ├── __init__.py
│ │ ├── classifier_free_guidance.py
│ │ ├── scheduling_ddim.py
│ │ ├── scheduling_ddpm.py
│ │ ├── scheduling_plms.py
│ │ └── scheduling_utils.py
│ ├── testing_utils.py
│ └── utils
│ ├── __init__.py
│ └── logging.py
├── tests
│ ├── __init__.py
│ ├── test_modeling_utils.py
│ └── test_scheduler.py
└── utils
├── check_config_docstrings.py
├── check_copies.py
├── check_dummies.py
├── check_inits.py
├── check_repo.py
├── check_table.py
└── check_tf_ops.py