hf_text-generation-inference/server/text_generation_server/models/galactica.py

230 lines
7.7 KiB
Python
Raw Normal View History

2022-12-01 11:31:54 -07:00
import re
import torch
import torch.distributed
from typing import List, Optional, Type
2022-12-01 11:31:54 -07:00
2023-01-20 04:24:39 -07:00
from transformers import (
AutoTokenizer,
AutoConfig,
PreTrainedTokenizerBase,
)
2023-03-07 10:52:22 -07:00
from text_generation_server.models import CausalLM
from text_generation_server.models.causal_lm import CausalLMBatch
from text_generation_server.pb import generate_pb2
from text_generation_server.models.custom_modeling.opt_modeling import OPTForCausalLM
2023-03-07 10:52:22 -07:00
from text_generation_server.utils import (
2022-12-01 11:31:54 -07:00
NextTokenChooser,
StoppingCriteria,
initialize_torch_distributed,
weight_files,
Weights,
2022-12-01 11:31:54 -07:00
)
# CREDIT: Papers with code => https://github.com/paperswithcode/galai/blob/main/galai/utils.py
# we split individual characters inside special tokens like [START_DNA]
CUSTOM_SEQ_RE = re.compile(r"(\[START_(DNA|SMILES|I_SMILES|AMINO)])(.*?)(\[END_\2])")
# token added to implement a custom sequence tokenization. This token is added at
# corpus cleaning step and removed in pretokenization. The digits are added to increase the chance
# that they do not occur in the corpus. The digits are escaped so that the token does not appear
# literally in the source code in case we ever include it in the training data.
SPLIT_MARKER = f"SPL{1}T-TH{1}S-Pl3A5E"
def _insert_split_marker(m: re.Match):
"""
Applies split marker based on a regex match of special tokens such as
[START_DNA].
Parameters
----------
n : str
Input text to split
Returns
----------
str - the text with the split token added
"""
start_token, _, sequence, end_token = m.groups()
sequence = re.sub(r"(.)", rf"{SPLIT_MARKER}\1", sequence, flags=re.DOTALL)
return f"{start_token}{sequence}{SPLIT_MARKER}{end_token}"
def escape_custom_split_sequence(text):
"""
Applies custom splitting to the text for GALILEO's tokenization
Parameters
----------
text : str
Input text to split
Returns
----------
str - the text with the split token added
"""
return CUSTOM_SEQ_RE.sub(_insert_split_marker, text)
# END CREDIT
class GalacticaCausalLMBatch(CausalLMBatch):
@classmethod
def from_pb(
2023-01-20 04:24:39 -07:00
cls,
pb: generate_pb2.Batch,
tokenizer: PreTrainedTokenizerBase,
dtype: torch.dtype,
2023-01-20 04:24:39 -07:00
device: torch.device,
2022-12-08 10:49:33 -07:00
) -> "GalacticaCausalLMBatch":
2022-12-01 11:31:54 -07:00
inputs = []
next_token_choosers = []
stopping_criterias = []
prefix_offsets = []
read_offsets = []
requests_idx_mapping = {}
2022-12-01 11:31:54 -07:00
# Parse batch
max_truncation = 0
padding_right_offset = 0
max_decode_tokens = 0
for i, r in enumerate(pb.requests):
requests_idx_mapping[r.id] = i
2022-12-01 11:31:54 -07:00
# Add escape_custom_split_sequence to the CausalLMBatch logic
inputs.append(escape_custom_split_sequence(r.inputs))
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
stopping_criteria = StoppingCriteria.from_pb(
r.stopping_parameters, tokenizer
)
stopping_criterias.append(stopping_criteria)
max_truncation = max(max_truncation, r.truncate)
max_decode_tokens += stopping_criteria.max_new_tokens
padding_right_offset = max(
padding_right_offset, stopping_criteria.max_new_tokens
2022-12-01 11:31:54 -07:00
)
tokenized_inputs = tokenizer(
2023-01-20 04:24:39 -07:00
inputs,
return_tensors="pt",
padding=True,
return_token_type_ids=False,
truncation=True,
max_length=max_truncation,
2022-12-01 11:31:54 -07:00
).to(device)
for _ in pb.requests:
input_len = tokenized_inputs["input_ids"].shape[1]
prefix_offsets.append(0)
read_offsets.append(input_len)
input_lengths = tokenized_inputs["attention_mask"].sum(1)
max_input_length = input_lengths.max()
input_ids = tokenized_inputs["input_ids"]
# Allocate maximum attention_mask
attention_mask = input_ids.new_zeros(
(pb.size, max_input_length + padding_right_offset)
)
# Copy tokenizer attention_mask into fully allocated attention_mask
attention_mask[:, :max_input_length] = tokenized_inputs["attention_mask"]
2023-01-20 07:35:22 -07:00
position_ids = tokenized_inputs["attention_mask"].long().cumsum(-1) - 1
position_ids.masked_fill_(tokenized_inputs["attention_mask"] == 0, 1)
all_input_ids = tokenized_inputs["input_ids"].T.split(1, dim=1)
2022-12-01 11:31:54 -07:00
max_tokens = len(inputs) * max_input_length + max_decode_tokens
2022-12-01 11:31:54 -07:00
return cls(
batch_id=pb.id,
requests=pb.requests,
requests_idx_mapping=requests_idx_mapping,
input_ids=input_ids,
attention_mask=attention_mask,
2023-01-20 07:35:22 -07:00
position_ids=position_ids,
2022-12-01 11:31:54 -07:00
past_key_values=None,
all_input_ids=list(all_input_ids),
input_lengths=input_lengths.tolist(),
prefix_offsets=prefix_offsets,
read_offsets=read_offsets,
2022-12-01 11:31:54 -07:00
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
max_input_length=max_input_length.item(),
padding_right_offset=padding_right_offset,
max_tokens=max_tokens,
2022-12-01 11:31:54 -07:00
)
class GalacticaSharded(CausalLM):
2023-01-31 10:53:56 -07:00
def __init__(
feat(server): GPTQ quantization (step1) (#277) Changes only the type from `bool` to `Option<Enum>` pretty much everywhere. - Use `Optional[str]` in Python (easier to manage than importing type everywhere). Except for the cli to get proper validation - Updated all models to handle gracefully new values. (Error out if unknown value, or gptq since not implemented). <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2023-05-12 06:46:41 -06:00
self,
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
2023-01-31 10:53:56 -07:00
):
self.process_group, rank, world_size = initialize_torch_distributed()
2022-12-01 11:31:54 -07:00
if torch.cuda.is_available():
device = torch.device(f"cuda:{rank}")
dtype = torch.float16 if dtype is None else dtype
2022-12-01 11:31:54 -07:00
else:
device = torch.device("cpu")
dtype = torch.float32
2023-01-31 10:53:56 -07:00
tokenizer = AutoTokenizer.from_pretrained(
model_id,
revision=revision,
padding_side="left",
truncation_side="left",
trust_remote_code=trust_remote_code,
2023-01-31 10:53:56 -07:00
)
2022-12-01 11:31:54 -07:00
2023-01-31 10:53:56 -07:00
config = AutoConfig.from_pretrained(
model_id,
revision=revision,
tp_parallel=True,
trust_remote_code=trust_remote_code,
2023-01-31 10:53:56 -07:00
)
config.quantize = quantize
2022-12-01 11:31:54 -07:00
tokenizer.pad_token_id = config.pad_token_id
torch.distributed.barrier(group=self.process_group)
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
weights = Weights(
filenames, device=device, dtype=dtype, process_group=self.process_group
)
feat(server): Using `quantize_config.json` instead of GPTQ_BITS env variables. (#671) - Current PR is not great because we're side stepping the `Weights.__init__` but Weights shouldn't requires anything related to the config or the model_id as it aims to be a simple Wrapper over multi file loading. - Ideal solution would be to use something like Rust enum ``` enum Quantize{ Bitandbytes(Bitsandbytes), GPTQ(bits: usize, groupsize: usize) ``` And passing that around during load. Unfortunately we don't have access to this, so for now, side-stepping seems easier. - Re-enabling groupsize<0 with exllama (confirmed it works.) Helps #601 In next steps we should make sure our quantization script uses that format and make it standard. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2023-07-25 05:00:27 -06:00
if config.quantize == "gptq":
weights._set_gptq_params(model_id)
2022-12-01 11:31:54 -07:00
model = OPTForCausalLM(config, weights)
2022-12-01 11:31:54 -07:00
torch.distributed.barrier(group=self.process_group)
super(CausalLM, self).__init__(
model=model,
2022-12-01 11:31:54 -07:00
tokenizer=tokenizer,
requires_padding=True,
dtype=dtype,
2022-12-01 11:31:54 -07:00
device=device,
rank=rank,
world_size=world_size,
2022-12-01 11:31:54 -07:00
)
@property
def batch_type(self) -> Type[CausalLMBatch]:
return GalacticaCausalLMBatch
2022-12-01 11:31:54 -07:00
def decode(self, generated_ids: List[int]) -> str:
# Do not skip special tokens as they are used for custom parsing rules of the generated text
return self.tokenizer.decode(
generated_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False
)
2022-12-01 11:31:54 -07:00
def forward(
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
):
2022-12-01 11:31:54 -07:00
outputs = self.model.forward(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=True,
)
return outputs.logits, outputs.past_key_values