hf_text-generation-inference/server/text_generation_server/models/bloom.py

254 lines
9.2 KiB
Python
Raw Normal View History

import torch
import torch.distributed
2022-12-08 10:49:33 -07:00
from typing import List, Optional, Type
from accelerate import init_empty_weights
from safetensors import safe_open
2023-01-20 04:24:39 -07:00
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
AutoConfig,
PreTrainedTokenizerBase,
)
from transformers.models.bloom.parallel_layers import (
TensorParallelColumnLinear,
TensorParallelEmbedding,
TensorParallelRowLinear,
)
2023-03-07 10:52:22 -07:00
from text_generation_server.models import CausalLM
from text_generation_server.models.causal_lm import CausalLMBatch
from text_generation_server.pb import generate_pb2
from text_generation_server.utils import (
initialize_torch_distributed,
weight_files,
)
HAS_BITS_AND_BYTES = True
try:
import bitsandbytes as bnb
from bitsandbytes.nn import Int8Params
except Exception as e:
HAS_BITS_AND_BYTES = False
2022-12-08 10:49:33 -07:00
class BloomCausalLMBatch(CausalLMBatch):
@classmethod
def from_pb(
2023-01-20 04:24:39 -07:00
cls,
pb: generate_pb2.Batch,
tokenizer: PreTrainedTokenizerBase,
device: torch.device,
2022-12-08 10:49:33 -07:00
) -> "CausalLMBatch":
batch = super(BloomCausalLMBatch, cls).from_pb(
pb=pb, tokenizer=tokenizer, device=device
)
batch.keys_head_dim_last = False
return batch
class BLOOM(CausalLM):
def __init__(self, model_id: str, revision: Optional[str] = None, quantize=False):
super(BLOOM, self).__init__(
model_id=model_id, revision=revision, quantize=quantize, decode_buffer=1
)
2022-12-08 10:49:33 -07:00
@property
def batch_type(self) -> Type[CausalLMBatch]:
return BloomCausalLMBatch
class BLOOMSharded(BLOOM):
2023-01-31 10:53:56 -07:00
def __init__(
self, model_id: str, revision: Optional[str] = None, quantize: bool = False
2023-01-31 10:53:56 -07:00
):
self.process_group, rank, world_size = initialize_torch_distributed()
self.master = rank == 0
if torch.cuda.is_available():
device = torch.device(f"cuda:{rank}")
2023-05-10 07:51:10 -06:00
dtype = torch.float16
else:
device = torch.device("cpu")
dtype = torch.float32
2023-01-31 10:53:56 -07:00
tokenizer = AutoTokenizer.from_pretrained(
model_id, revision=revision, padding_side="left", truncation_side="left"
2023-01-31 10:53:56 -07:00
)
config = AutoConfig.from_pretrained(
model_id, revision=revision, slow_but_exact=False, tp_parallel=True
)
config.pad_token_id = 3
torch.distributed.barrier(group=self.process_group)
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
with init_empty_weights():
model = AutoModelForCausalLM.from_config(config)
torch.distributed.barrier(group=self.process_group)
self.load_weights(
model,
filenames,
quantize=quantize,
device=device,
dtype=dtype,
rank=rank,
world_size=world_size,
)
self.model = model.eval()
torch.distributed.barrier(group=self.process_group)
super(CausalLM, self).__init__(
tokenizer=tokenizer,
requires_padding=True,
dtype=dtype,
device=device,
decode_buffer=1,
rank=rank,
world_size=world_size,
)
@staticmethod
def load_weights(
model,
filenames: List[str],
quantize: bool,
device: torch.device,
dtype: torch.dtype,
rank: int,
world_size: int,
):
parameters = dict(model.named_parameters())
for file in filenames:
with safe_open(
file, framework="pt", device=str(device) if not quantize else "cpu"
) as f:
for name in f.keys():
full_name = f"transformer.{name}"
module_name, param_name = full_name.rsplit(".", 1)
module = model.get_submodule(module_name)
current_tensor = parameters[full_name]
slice_ = f.get_slice(name)
if isinstance(module, TensorParallelColumnLinear):
size = slice_.get_shape()[0]
block_size = size // world_size
start = rank * block_size
stop = (rank + 1) * block_size
tensor = slice_[start:stop]
elif isinstance(module, TensorParallelRowLinear):
if param_name == "weight":
size = slice_.get_shape()[1]
block_size = size // world_size
start = rank * block_size
stop = (rank + 1) * block_size
tensor = slice_[:, start:stop]
else:
tensor = slice_[:]
# XXX: Hack for Rowlinear to add the bias only once.
if rank != 0:
tensor = torch.zeros_like(tensor)
elif isinstance(module, TensorParallelEmbedding):
size = slice_.get_shape()[0]
block_size = size // world_size
start = rank * block_size
stop = (rank + 1) * block_size
tensor = slice_[start:stop]
else:
tensor = slice_[:]
if current_tensor.shape != tensor.shape:
raise ValueError(
f"Name {name} -- Current {current_tensor.shape} and got {tensor.shape}"
)
tensor = tensor.contiguous().to(dtype)
if quantize:
if not HAS_BITS_AND_BYTES:
raise ImportError(
"bitsandbytes is not available on your machine either because it is not installed "
"or you don't have a GPU.\n"
"You can install it with `pip install bitsandbytes`."
)
if (
type(module)
in [TensorParallelRowLinear, TensorParallelColumnLinear]
and param_name == "weight"
):
tensor = Int8Params(
tensor,
has_fp16_weights=False,
requires_grad=False,
).to(device)
state = bnb.MatmulLtState()
state.threshold = 6.0
state.has_fp16_weights = False
state.memory_efficient_backward = False
state.use_pool = True
state.CB = tensor.CB
state.SCB = tensor.SCB
tensor.CB = None
tensor.SCB = None
def replace_linear(state):
def linear(input, weight, bias):
out = bnb.matmul(
input,
weight,
state=state,
threshold=state.threshold,
bias=bias,
)
if state.CB is not None:
# we converted 8-bit row major to turing/ampere format
# in the first inference pass
# we no longer need the row-major weight
del state.CB
weight.data = state.CxB
return out
return linear
module.linear = replace_linear(state)
else:
tensor = tensor.to(device)
module._parameters[param_name] = tensor
if name == "word_embeddings.weight":
model.lm_head._parameters["weight"] = tensor
uninitialized_parameters = []
for n, p in model.named_parameters():
if p.data.device == torch.device("meta"):
uninitialized_parameters.append(n)
if uninitialized_parameters:
raise RuntimeError(
f"found uninitialized parameters in model: {uninitialized_parameters}"
)
def forward(
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
):
outputs = self.model.forward(
input_ids=input_ids,
attention_mask=attention_mask,
2023-01-20 07:35:22 -07:00
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=True,
)
# Logits are sharded, so we need to gather them
2022-12-15 09:03:56 -07:00
logits = [torch.empty_like(outputs.logits) for _ in range(self.world_size)]
torch.distributed.all_gather(logits, outputs.logits, group=self.process_group)
logits = torch.cat(logits, dim=2)
return logits, outputs.past_key_values