hf_text-generation-inference/server/text_generation_server/utils/hub.py

177 lines
5.9 KiB
Python
Raw Normal View History

2023-02-14 05:02:16 -07:00
import time
import os
from datetime import timedelta
from loguru import logger
from pathlib import Path
from typing import Optional, List
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
from huggingface_hub.utils import (
LocalEntryNotFoundError,
EntryNotFoundError,
RevisionNotFoundError, # Import here to ease try/except in other part of the lib
)
WEIGHTS_CACHE_OVERRIDE = os.getenv("WEIGHTS_CACHE_OVERRIDE", None)
def weight_hub_files(
model_id: str, revision: Optional[str] = None, extension: str = ".safetensors"
) -> List[str]:
"""Get the weights filenames on the hub"""
api = HfApi()
info = api.model_info(model_id, revision=revision)
filenames = [
s.rfilename
for s in info.siblings
if s.rfilename.endswith(extension) and len(s.rfilename.split("/")) == 1
]
2023-02-14 05:02:16 -07:00
if not filenames:
raise EntryNotFoundError(
f"No {extension} weights found for model {model_id} and revision {revision}.",
None,
)
return filenames
def try_to_load_from_cache(
model_id: str, revision: Optional[str], filename: str
) -> Optional[Path]:
"""Try to load a file from the Hugging Face cache"""
if revision is None:
revision = "main"
object_id = model_id.replace("/", "--")
repo_cache = Path(HUGGINGFACE_HUB_CACHE) / f"models--{object_id}"
if not repo_cache.is_dir():
# No cache for this model
return None
refs_dir = repo_cache / "refs"
snapshots_dir = repo_cache / "snapshots"
# Resolve refs (for instance to convert main to the associated commit sha)
if refs_dir.is_dir():
revision_file = refs_dir / revision
if revision_file.exists():
with revision_file.open() as f:
revision = f.read()
# Check if revision folder exists
if not snapshots_dir.exists():
return None
cached_shas = os.listdir(snapshots_dir)
if revision not in cached_shas:
# No cache for this revision and we won't try to return a random revision
return None
# Check if file exists in cache
cached_file = snapshots_dir / revision / filename
return cached_file if cached_file.is_file() else None
def weight_files(
model_id: str, revision: Optional[str] = None, extension: str = ".safetensors"
) -> List[Path]:
"""Get the local files"""
# Local model
if Path(model_id).exists() and Path(model_id).is_dir():
local_files = list(Path(model_id).glob(f"*{extension}"))
if not local_files:
raise FileNotFoundError(
f"No local weights found in {model_id} with extension {extension}"
)
return local_files
2023-02-14 05:02:16 -07:00
try:
filenames = weight_hub_files(model_id, revision, extension)
except EntryNotFoundError as e:
if extension != ".safetensors":
raise e
# Try to see if there are pytorch weights
pt_filenames = weight_hub_files(model_id, revision, extension=".bin")
# Change pytorch extension to safetensors extension
# It is possible that we have safetensors weights locally even though they are not on the
# hub if we converted weights locally without pushing them
filenames = [
f"{Path(f).stem.lstrip('pytorch_')}.safetensors" for f in pt_filenames
]
if WEIGHTS_CACHE_OVERRIDE is not None:
files = []
for filename in filenames:
p = Path(WEIGHTS_CACHE_OVERRIDE) / filename
if not p.exists():
raise FileNotFoundError(
2023-02-14 05:02:16 -07:00
f"File {p} not found in {WEIGHTS_CACHE_OVERRIDE}."
)
files.append(p)
return files
files = []
for filename in filenames:
cache_file = try_to_load_from_cache(
model_id, revision=revision, filename=filename
)
if cache_file is None:
raise LocalEntryNotFoundError(
f"File {filename} of model {model_id} not found in "
f"{os.getenv('HUGGINGFACE_HUB_CACHE', 'the local cache')}. "
f"Please run `text-generation-server download-weights {model_id}` first."
)
files.append(cache_file)
return files
def download_weights(
filenames: List[str], model_id: str, revision: Optional[str] = None
) -> List[Path]:
"""Download the safetensors files from the hub"""
def download_file(filename, tries=5):
2023-02-14 05:02:16 -07:00
local_file = try_to_load_from_cache(model_id, revision, filename)
if local_file is not None:
logger.info(f"File {filename} already present in cache.")
return Path(local_file)
2023-02-14 05:02:16 -07:00
for i in range(tries):
try:
logger.info(f"Download file: {filename}")
start_time = time.time()
local_file = hf_hub_download(
filename=filename,
repo_id=model_id,
revision=revision,
local_files_only=False,
)
logger.info(
f"Downloaded {local_file} in {timedelta(seconds=int(time.time() - start_time))}."
)
return Path(local_file)
except Exception as e:
if i + 1 == tries:
raise e
logger.error(e)
logger.info(f"Retry {i + 1}/{tries - 1}")
2023-02-14 05:02:16 -07:00
# We do this instead of using tqdm because we want to parse the logs with the launcher
start_time = time.time()
files = []
2023-02-18 06:04:11 -07:00
for i, filename in enumerate(filenames):
file = download_file(filename)
2023-02-14 05:02:16 -07:00
elapsed = timedelta(seconds=int(time.time() - start_time))
2023-02-18 06:04:11 -07:00
remaining = len(filenames) - (i + 1)
eta = (elapsed / (i + 1)) * remaining if remaining > 0 else 0
2023-02-14 05:02:16 -07:00
2023-02-18 06:04:11 -07:00
logger.info(f"Download: [{i + 1}/{len(filenames)}] -- ETA: {eta}")
files.append(file)
2023-02-14 05:02:16 -07:00
return files