2022-12-01 11:31:54 -07:00
|
|
|
import re
|
|
|
|
import torch
|
|
|
|
import torch.distributed
|
|
|
|
|
2023-02-20 11:28:57 -07:00
|
|
|
from typing import List, Optional, Type, Tuple
|
2022-12-01 11:31:54 -07:00
|
|
|
|
|
|
|
from accelerate import init_empty_weights
|
|
|
|
from safetensors import safe_open
|
2023-01-20 04:24:39 -07:00
|
|
|
from transformers import (
|
|
|
|
AutoTokenizer,
|
|
|
|
AutoModelForCausalLM,
|
|
|
|
AutoConfig,
|
|
|
|
PreTrainedTokenizerBase,
|
|
|
|
)
|
2022-12-01 11:31:54 -07:00
|
|
|
from transformers.models.opt.parallel_layers import (
|
|
|
|
TensorParallelColumnLinear,
|
|
|
|
TensorParallelEmbedding,
|
|
|
|
TensorParallelRowLinear,
|
|
|
|
)
|
|
|
|
|
2023-03-07 10:52:22 -07:00
|
|
|
from text_generation_server.models import CausalLM
|
|
|
|
from text_generation_server.pb import generate_pb2
|
|
|
|
from text_generation_server.models.causal_lm import CausalLMBatch
|
|
|
|
from text_generation_server.utils import (
|
2022-12-01 11:31:54 -07:00
|
|
|
NextTokenChooser,
|
|
|
|
StoppingCriteria,
|
|
|
|
initialize_torch_distributed,
|
|
|
|
weight_files,
|
|
|
|
)
|
|
|
|
|
|
|
|
HAS_BITS_AND_BYTES = True
|
|
|
|
try:
|
|
|
|
import bitsandbytes as bnb
|
|
|
|
from bitsandbytes.nn import Int8Params
|
|
|
|
except Exception as e:
|
|
|
|
HAS_BITS_AND_BYTES = False
|
|
|
|
|
|
|
|
|
|
|
|
# CREDIT: Papers with code => https://github.com/paperswithcode/galai/blob/main/galai/utils.py
|
|
|
|
|
|
|
|
# we split individual characters inside special tokens like [START_DNA]
|
|
|
|
CUSTOM_SEQ_RE = re.compile(r"(\[START_(DNA|SMILES|I_SMILES|AMINO)])(.*?)(\[END_\2])")
|
|
|
|
|
|
|
|
# token added to implement a custom sequence tokenization. This token is added at
|
|
|
|
# corpus cleaning step and removed in pretokenization. The digits are added to increase the chance
|
|
|
|
# that they do not occur in the corpus. The digits are escaped so that the token does not appear
|
|
|
|
# literally in the source code in case we ever include it in the training data.
|
|
|
|
SPLIT_MARKER = f"SPL{1}T-TH{1}S-Pl3A5E"
|
|
|
|
|
|
|
|
|
|
|
|
def _insert_split_marker(m: re.Match):
|
|
|
|
"""
|
|
|
|
Applies split marker based on a regex match of special tokens such as
|
|
|
|
[START_DNA].
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
n : str
|
|
|
|
Input text to split
|
|
|
|
Returns
|
|
|
|
----------
|
|
|
|
str - the text with the split token added
|
|
|
|
"""
|
|
|
|
start_token, _, sequence, end_token = m.groups()
|
|
|
|
sequence = re.sub(r"(.)", rf"{SPLIT_MARKER}\1", sequence, flags=re.DOTALL)
|
|
|
|
return f"{start_token}{sequence}{SPLIT_MARKER}{end_token}"
|
|
|
|
|
|
|
|
|
|
|
|
def escape_custom_split_sequence(text):
|
|
|
|
"""
|
|
|
|
Applies custom splitting to the text for GALILEO's tokenization
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
text : str
|
|
|
|
Input text to split
|
|
|
|
Returns
|
|
|
|
----------
|
|
|
|
str - the text with the split token added
|
|
|
|
"""
|
|
|
|
return CUSTOM_SEQ_RE.sub(_insert_split_marker, text)
|
|
|
|
|
|
|
|
|
|
|
|
# END CREDIT
|
|
|
|
|
|
|
|
|
|
|
|
class GalacticaCausalLMBatch(CausalLMBatch):
|
|
|
|
@classmethod
|
|
|
|
def from_pb(
|
2023-01-20 04:24:39 -07:00
|
|
|
cls,
|
|
|
|
pb: generate_pb2.Batch,
|
|
|
|
tokenizer: PreTrainedTokenizerBase,
|
|
|
|
device: torch.device,
|
2022-12-08 10:49:33 -07:00
|
|
|
) -> "GalacticaCausalLMBatch":
|
2022-12-01 11:31:54 -07:00
|
|
|
inputs = []
|
|
|
|
next_token_choosers = []
|
|
|
|
stopping_criterias = []
|
|
|
|
input_lengths = []
|
|
|
|
|
|
|
|
# Parse batch
|
2023-04-09 12:22:27 -06:00
|
|
|
max_truncation = 0
|
2023-03-07 12:05:21 -07:00
|
|
|
padding_right_offset = 0
|
2022-12-01 11:31:54 -07:00
|
|
|
for r in pb.requests:
|
|
|
|
# Add escape_custom_split_sequence to the CausalLMBatch logic
|
|
|
|
inputs.append(escape_custom_split_sequence(r.inputs))
|
|
|
|
input_lengths.append(r.input_length)
|
2023-03-15 06:12:49 -06:00
|
|
|
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
|
2023-03-07 12:05:21 -07:00
|
|
|
stopping_criteria = StoppingCriteria.from_pb(
|
|
|
|
r.stopping_parameters, tokenizer
|
|
|
|
)
|
|
|
|
stopping_criterias.append(stopping_criteria)
|
2023-04-09 12:22:27 -06:00
|
|
|
max_truncation = max(max_truncation, r.truncate)
|
2023-03-07 12:05:21 -07:00
|
|
|
padding_right_offset = max(
|
|
|
|
padding_right_offset, stopping_criteria.max_new_tokens
|
2022-12-01 11:31:54 -07:00
|
|
|
)
|
|
|
|
|
2023-01-20 04:24:39 -07:00
|
|
|
# Tokenize batch
|
2022-12-01 11:31:54 -07:00
|
|
|
tokenized_inputs = tokenizer(
|
2023-01-20 04:24:39 -07:00
|
|
|
inputs,
|
|
|
|
return_tensors="pt",
|
|
|
|
padding=True,
|
|
|
|
return_token_type_ids=False,
|
2023-04-09 12:22:27 -06:00
|
|
|
truncation=True,
|
|
|
|
max_length=max_truncation,
|
2022-12-01 11:31:54 -07:00
|
|
|
).to(device)
|
2023-04-09 12:22:27 -06:00
|
|
|
|
|
|
|
input_lengths = tokenized_inputs["attention_mask"].sum(1)
|
|
|
|
max_input_length = input_lengths.max()
|
|
|
|
|
2023-03-07 12:05:21 -07:00
|
|
|
input_ids = tokenized_inputs["input_ids"]
|
|
|
|
# Allocate maximum attention_mask
|
|
|
|
attention_mask = input_ids.new_zeros(
|
2023-04-09 12:22:27 -06:00
|
|
|
(pb.size, max_input_length + padding_right_offset)
|
2023-03-07 12:05:21 -07:00
|
|
|
)
|
|
|
|
# Copy tokenizer attention_mask into fully allocated attention_mask
|
2023-04-09 12:22:27 -06:00
|
|
|
attention_mask[:, :max_input_length] = tokenized_inputs["attention_mask"]
|
2023-03-07 12:05:21 -07:00
|
|
|
|
2023-01-20 07:35:22 -07:00
|
|
|
position_ids = tokenized_inputs["attention_mask"].long().cumsum(-1) - 1
|
|
|
|
position_ids.masked_fill_(tokenized_inputs["attention_mask"] == 0, 1)
|
2022-12-01 11:31:54 -07:00
|
|
|
all_input_ids = tokenized_inputs["input_ids"].unsqueeze(-1)
|
|
|
|
|
|
|
|
return cls(
|
|
|
|
batch_id=pb.id,
|
|
|
|
requests=pb.requests,
|
2023-03-07 12:05:21 -07:00
|
|
|
input_ids=input_ids,
|
|
|
|
attention_mask=attention_mask,
|
2023-01-20 07:35:22 -07:00
|
|
|
position_ids=position_ids,
|
2022-12-01 11:31:54 -07:00
|
|
|
past_key_values=None,
|
|
|
|
all_input_ids=all_input_ids,
|
|
|
|
input_lengths=input_lengths,
|
|
|
|
next_token_choosers=next_token_choosers,
|
|
|
|
stopping_criterias=stopping_criterias,
|
|
|
|
size=pb.size,
|
2023-04-09 12:22:27 -06:00
|
|
|
max_input_length=max_input_length,
|
2023-03-07 12:05:21 -07:00
|
|
|
padding_right_offset=padding_right_offset,
|
2022-12-01 11:31:54 -07:00
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class Galactica(CausalLM):
|
|
|
|
@property
|
|
|
|
def batch_type(self) -> Type[CausalLMBatch]:
|
|
|
|
return GalacticaCausalLMBatch
|
|
|
|
|
2023-01-20 04:24:39 -07:00
|
|
|
def decode(self, generated_ids: List[int]) -> str:
|
|
|
|
# Do not skip special tokens as they are used for custom parsing rules of the generated text
|
|
|
|
return self.tokenizer.decode(
|
|
|
|
generated_ids, skip_special_tokens=False, cleanup_tokenization_spaces=False
|
|
|
|
)
|
|
|
|
|
2023-02-20 11:28:57 -07:00
|
|
|
def forward(
|
|
|
|
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
|
|
|
|
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
|
|
|
|
"""Overwrite forward to ignore position_ids"""
|
|
|
|
|
|
|
|
# Model Forward
|
|
|
|
outputs = self.model.forward(
|
|
|
|
input_ids=input_ids,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
past_key_values=past_key_values,
|
|
|
|
use_cache=True,
|
|
|
|
)
|
|
|
|
return outputs.logits, outputs.past_key_values
|
|
|
|
|
2022-12-01 11:31:54 -07:00
|
|
|
|
|
|
|
class GalacticaSharded(Galactica):
|
2023-01-31 10:53:56 -07:00
|
|
|
def __init__(
|
2023-02-03 04:43:37 -07:00
|
|
|
self, model_id: str, revision: Optional[str] = None, quantize: bool = False
|
2023-01-31 10:53:56 -07:00
|
|
|
):
|
2022-12-01 11:31:54 -07:00
|
|
|
self.process_group, self.rank, self.world_size = initialize_torch_distributed()
|
|
|
|
self.master = self.rank == 0
|
|
|
|
if torch.cuda.is_available():
|
|
|
|
device = torch.device(f"cuda:{self.rank}")
|
|
|
|
dtype = torch.bfloat16
|
|
|
|
else:
|
|
|
|
device = torch.device("cpu")
|
|
|
|
dtype = torch.float32
|
|
|
|
|
2023-01-31 10:53:56 -07:00
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
2023-04-09 12:22:27 -06:00
|
|
|
model_id, revision=revision, padding_side="left", truncation_side="left"
|
2023-01-31 10:53:56 -07:00
|
|
|
)
|
2022-12-01 11:31:54 -07:00
|
|
|
|
2023-01-31 10:53:56 -07:00
|
|
|
config = AutoConfig.from_pretrained(
|
2023-02-03 04:43:37 -07:00
|
|
|
model_id, revision=revision, tp_parallel=True
|
2023-01-31 10:53:56 -07:00
|
|
|
)
|
2022-12-01 11:31:54 -07:00
|
|
|
tokenizer.pad_token_id = config.pad_token_id
|
|
|
|
|
|
|
|
torch.distributed.barrier(group=self.process_group)
|
2023-02-03 04:43:37 -07:00
|
|
|
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
2022-12-01 11:31:54 -07:00
|
|
|
|
|
|
|
with init_empty_weights():
|
|
|
|
model = AutoModelForCausalLM.from_config(config)
|
|
|
|
|
|
|
|
torch.distributed.barrier(group=self.process_group)
|
|
|
|
self.load_weights(
|
|
|
|
model,
|
|
|
|
filenames,
|
|
|
|
quantize=quantize,
|
|
|
|
device=device,
|
|
|
|
rank=self.rank,
|
|
|
|
world_size=self.world_size,
|
|
|
|
)
|
|
|
|
self.model = model.eval().to(dtype)
|
|
|
|
torch.distributed.barrier(group=self.process_group)
|
|
|
|
super(CausalLM, self).__init__(
|
|
|
|
tokenizer=tokenizer,
|
|
|
|
device=device,
|
|
|
|
)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def load_weights(
|
|
|
|
model,
|
|
|
|
filenames: List[str],
|
|
|
|
quantize: bool,
|
|
|
|
device: torch.device,
|
|
|
|
rank: int,
|
|
|
|
world_size: int,
|
|
|
|
):
|
|
|
|
parameters = dict(model.named_parameters())
|
|
|
|
for file in filenames:
|
|
|
|
with safe_open(
|
|
|
|
file, framework="pt", device=str(device) if not quantize else "cpu"
|
|
|
|
) as f:
|
|
|
|
for name in f.keys():
|
|
|
|
if name == "lm_head.weight":
|
|
|
|
continue
|
|
|
|
|
|
|
|
module_name, param_name = name.rsplit(".", 1)
|
2022-12-12 10:25:22 -07:00
|
|
|
module = model.get_submodule(module_name)
|
2022-12-01 11:31:54 -07:00
|
|
|
current_tensor = parameters[name]
|
|
|
|
|
|
|
|
slice_ = f.get_slice(name)
|
|
|
|
|
|
|
|
if isinstance(module, TensorParallelColumnLinear):
|
|
|
|
if param_name == "weight":
|
|
|
|
size = slice_.get_shape()[0]
|
|
|
|
block_size = size // world_size
|
|
|
|
start = rank * block_size
|
|
|
|
stop = (rank + 1) * block_size
|
|
|
|
tensor = slice_[start:stop]
|
|
|
|
else:
|
|
|
|
size = slice_.get_shape()[0]
|
|
|
|
block_size = size // world_size
|
|
|
|
start = rank * block_size
|
|
|
|
stop = (rank + 1) * block_size
|
|
|
|
tensor = slice_[start:stop]
|
|
|
|
elif isinstance(module, TensorParallelRowLinear):
|
|
|
|
if param_name == "weight":
|
|
|
|
size = slice_.get_shape()[1]
|
|
|
|
block_size = size // world_size
|
|
|
|
start = rank * block_size
|
|
|
|
stop = (rank + 1) * block_size
|
|
|
|
tensor = slice_[:, start:stop]
|
|
|
|
else:
|
|
|
|
tensor = slice_[:]
|
|
|
|
# XXX: Hack for Rowlinear to add the bias only once.
|
|
|
|
if rank != 0:
|
|
|
|
tensor = torch.zeros_like(tensor)
|
|
|
|
elif isinstance(module, TensorParallelEmbedding):
|
|
|
|
size = slice_.get_shape()[0]
|
|
|
|
block_size = size // world_size
|
|
|
|
start = rank * block_size
|
|
|
|
stop = (rank + 1) * block_size
|
|
|
|
tensor = slice_[start:stop]
|
|
|
|
else:
|
|
|
|
tensor = slice_[:]
|
|
|
|
|
|
|
|
if current_tensor.shape != tensor.shape:
|
|
|
|
raise ValueError(
|
|
|
|
f"Name {name} -- Current {current_tensor.shape} and got {tensor.shape}"
|
|
|
|
)
|
|
|
|
|
|
|
|
tensor = tensor.contiguous()
|
|
|
|
|
|
|
|
if quantize:
|
|
|
|
if not HAS_BITS_AND_BYTES:
|
|
|
|
raise ImportError(
|
|
|
|
"bitsandbytes is not available on your machine either because it is not installed "
|
|
|
|
"or you don't have a GPU.\n"
|
|
|
|
"You can install it with `pip install bitsandbytes`."
|
|
|
|
)
|
|
|
|
|
|
|
|
if (
|
|
|
|
type(module)
|
|
|
|
in [TensorParallelRowLinear, TensorParallelColumnLinear]
|
|
|
|
and param_name == "weight"
|
|
|
|
):
|
|
|
|
tensor = Int8Params(
|
2023-01-31 09:40:38 -07:00
|
|
|
tensor,
|
2022-12-01 11:31:54 -07:00
|
|
|
has_fp16_weights=False,
|
|
|
|
requires_grad=False,
|
|
|
|
).to(device)
|
|
|
|
state = bnb.MatmulLtState()
|
|
|
|
state.threshold = 6.0
|
|
|
|
state.has_fp16_weights = False
|
|
|
|
state.memory_efficient_backward = False
|
|
|
|
state.use_pool = True
|
|
|
|
state.CB = tensor.CB
|
|
|
|
state.SCB = tensor.SCB
|
|
|
|
tensor.CB = None
|
|
|
|
tensor.SCB = None
|
|
|
|
|
2023-01-31 09:40:38 -07:00
|
|
|
def replace_linear(state):
|
2022-12-01 11:31:54 -07:00
|
|
|
def linear(input, weight, bias):
|
|
|
|
out = bnb.matmul(
|
|
|
|
input,
|
|
|
|
weight,
|
|
|
|
state=state,
|
|
|
|
threshold=state.threshold,
|
|
|
|
bias=bias,
|
|
|
|
)
|
|
|
|
|
|
|
|
if state.CB is not None:
|
|
|
|
# we converted 8-bit row major to turing/ampere format
|
|
|
|
# in the first inference pass
|
|
|
|
# we no longer need the row-major weight
|
|
|
|
del state.CB
|
|
|
|
weight.data = state.CxB
|
|
|
|
|
2023-01-31 09:40:38 -07:00
|
|
|
return out
|
2022-12-01 11:31:54 -07:00
|
|
|
|
|
|
|
return linear
|
|
|
|
|
2023-01-31 09:40:38 -07:00
|
|
|
module.linear = replace_linear(state)
|
2022-12-01 11:31:54 -07:00
|
|
|
|
|
|
|
else:
|
|
|
|
tensor = tensor.to(device)
|
|
|
|
|
|
|
|
module._parameters[param_name] = tensor
|
|
|
|
if name == "model.decoder.embed_tokens.weight":
|
|
|
|
model.lm_head._parameters["weight"] = tensor
|
|
|
|
|
2023-01-30 07:36:16 -07:00
|
|
|
def forward(
|
|
|
|
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
|
|
|
|
):
|
2022-12-01 11:31:54 -07:00
|
|
|
outputs = self.model.forward(
|
|
|
|
input_ids=input_ids,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
past_key_values=past_key_values,
|
|
|
|
use_cache=True,
|
|
|
|
)
|
|
|
|
|
|
|
|
# Logits are sharded, so we need to gather them
|
2022-12-15 09:03:56 -07:00
|
|
|
logits = [torch.empty_like(outputs.logits) for _ in range(self.world_size)]
|
|
|
|
torch.distributed.all_gather(logits, outputs.logits, group=self.process_group)
|
|
|
|
logits = torch.cat(logits, dim=2)
|
2022-12-01 11:31:54 -07:00
|
|
|
|
|
|
|
return logits, outputs.past_key_values
|