2023-06-08 06:51:52 -06:00
from pathlib import Path
2023-06-23 04:40:46 -06:00
from typing import List , Dict , Optional
2023-07-12 02:00:02 -06:00
from safetensors import safe_open , SafetensorError
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438)
Let's start discussing implementation.
- Need to expose the quantization scripts (either included here or add
doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa)
- Make sure GPTQ works for multiple models (priority to Falcon).
Currently it means that every place we use `get_{tensor|sharded}` to
check for quantization.
My idea is to reintegrate as much as possible into `utils/layer.py` by
expanding `load_multi` to be a bit more generic.
This might require some thinking, but ultimately the
`qweight,qzeros,scales,g_idx` should be in a single place, and
independant of bias presence.
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
---------
Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal>
Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
import torch
2023-06-08 06:51:52 -06:00
class Weights :
2023-06-30 11:09:59 -06:00
def __init__ (
self ,
filenames : List [ Path ] ,
device ,
dtype ,
process_group ,
aliases : Optional [ Dict [ str , List [ str ] ] ] = None ,
) :
2023-06-08 06:51:52 -06:00
routing = { }
for filename in filenames :
with safe_open ( filename , framework = " pytorch " ) as f :
for k in f . keys ( ) :
if k in routing :
raise RuntimeError (
f " Key { k } was found in multiple files: { filename } and { routing [ k ] } "
)
routing [ k ] = filename
2023-06-23 04:40:46 -06:00
if aliases is None :
aliases = { }
self . aliases = aliases
2023-06-08 06:51:52 -06:00
self . routing = routing
self . device = device
self . dtype = dtype
self . process_group = process_group
self . _handles = { }
def _get_handle ( self , filename ) :
if filename not in self . _handles :
f = safe_open ( filename , framework = " pytorch " )
self . _handles [ filename ] = f
return self . _handles [ filename ]
2023-06-23 04:40:46 -06:00
def get_filename ( self , tensor_name : str ) - > ( str , str ) :
2023-06-08 06:51:52 -06:00
filename = self . routing . get ( tensor_name , None )
if filename is None :
2023-06-23 04:40:46 -06:00
aliases = self . aliases . get ( tensor_name , [ ] )
for alias in aliases :
filename = self . routing . get ( alias , None )
if filename is not None :
return str ( filename ) , alias
2023-06-08 06:51:52 -06:00
raise RuntimeError ( f " weight { tensor_name } does not exist " )
2023-06-23 04:40:46 -06:00
return str ( filename ) , tensor_name
2023-06-08 06:51:52 -06:00
def _get_slice ( self , tensor_name : str ) :
2023-06-30 11:09:59 -06:00
filename , tensor_name = self . get_filename ( tensor_name )
2023-06-08 06:51:52 -06:00
f = self . _get_handle ( filename )
slice_ = f . get_slice ( tensor_name )
return slice_
def get_shape ( self , tensor_name : str ) :
return self . _get_slice ( tensor_name ) . get_shape ( )
def get_tensor ( self , tensor_name : str ) :
2023-06-23 04:40:46 -06:00
filename , tensor_name = self . get_filename ( tensor_name )
2023-06-08 06:51:52 -06:00
f = self . _get_handle ( filename )
tensor = f . get_tensor ( tensor_name )
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438)
Let's start discussing implementation.
- Need to expose the quantization scripts (either included here or add
doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa)
- Make sure GPTQ works for multiple models (priority to Falcon).
Currently it means that every place we use `get_{tensor|sharded}` to
check for quantization.
My idea is to reintegrate as much as possible into `utils/layer.py` by
expanding `load_multi` to be a bit more generic.
This might require some thinking, but ultimately the
`qweight,qzeros,scales,g_idx` should be in a single place, and
independant of bias presence.
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
---------
Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal>
Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
# Special case for gptq which shouldn't convert
# u4 which are disguised as int32
if tensor . dtype not in [ torch . int32 , torch . int64 ] :
tensor = tensor . to ( dtype = self . dtype )
2023-06-08 06:51:52 -06:00
tensor = tensor . to ( device = self . device )
return tensor
2023-07-12 08:43:31 -06:00
def get_partial_sharded ( self , tensor_name : str , dim : int ) :
2023-06-23 04:40:46 -06:00
filename , tensor_name = self . get_filename ( tensor_name )
2023-06-08 06:51:52 -06:00
world_size = self . process_group . size ( )
rank = self . process_group . rank ( )
f = self . _get_handle ( filename )
slice_ = f . get_slice ( tensor_name )
size = slice_ . get_shape ( ) [ dim ]
block_size = size / / world_size
start = rank * block_size
stop = ( rank + 1 ) * block_size
if dim == 0 :
tensor = slice_ [ start : stop ]
elif dim == 1 :
tensor = slice_ [ : , start : stop ]
else :
raise NotImplementedError ( " Let ' s make that generic when needed " )
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438)
Let's start discussing implementation.
- Need to expose the quantization scripts (either included here or add
doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa)
- Make sure GPTQ works for multiple models (priority to Falcon).
Currently it means that every place we use `get_{tensor|sharded}` to
check for quantization.
My idea is to reintegrate as much as possible into `utils/layer.py` by
expanding `load_multi` to be a bit more generic.
This might require some thinking, but ultimately the
`qweight,qzeros,scales,g_idx` should be in a single place, and
independant of bias presence.
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
---------
Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal>
Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
# Special case for gptq which shouldn't convert
# u4 which are disguised as int32
if tensor . dtype != torch . int32 :
tensor = tensor . to ( dtype = self . dtype )
2023-06-08 06:51:52 -06:00
tensor = tensor . to ( device = self . device )
return tensor
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438)
Let's start discussing implementation.
- Need to expose the quantization scripts (either included here or add
doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa)
- Make sure GPTQ works for multiple models (priority to Falcon).
Currently it means that every place we use `get_{tensor|sharded}` to
check for quantization.
My idea is to reintegrate as much as possible into `utils/layer.py` by
expanding `load_multi` to be a bit more generic.
This might require some thinking, but ultimately the
`qweight,qzeros,scales,g_idx` should be in a single place, and
independant of bias presence.
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
---------
Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal>
Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
2023-07-12 08:43:31 -06:00
def get_sharded ( self , tensor_name : str , dim : int ) :
filename , tensor_name = self . get_filename ( tensor_name )
f = self . _get_handle ( filename )
slice_ = f . get_slice ( tensor_name )
world_size = self . process_group . size ( )
size = slice_ . get_shape ( ) [ dim ]
assert (
size % world_size == 0
) , f " The choosen size { size } is not compatible with sharding on { world_size } shards "
return self . get_partial_sharded ( tensor_name , dim )
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438)
Let's start discussing implementation.
- Need to expose the quantization scripts (either included here or add
doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa)
- Make sure GPTQ works for multiple models (priority to Falcon).
Currently it means that every place we use `get_{tensor|sharded}` to
check for quantization.
My idea is to reintegrate as much as possible into `utils/layer.py` by
expanding `load_multi` to be a bit more generic.
This might require some thinking, but ultimately the
`qweight,qzeros,scales,g_idx` should be in a single place, and
independant of bias presence.
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
---------
Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal>
Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
def get_multi_weights_col ( self , prefixes : List [ str ] , quantize : str , dim : int ) :
if quantize == " gptq " :
try :
2023-06-30 11:09:59 -06:00
qweight = torch . cat (
[ self . get_sharded ( f " { p } .qweight " , dim = 1 ) for p in prefixes ] , dim = 1
)
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438)
Let's start discussing implementation.
- Need to expose the quantization scripts (either included here or add
doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa)
- Make sure GPTQ works for multiple models (priority to Falcon).
Currently it means that every place we use `get_{tensor|sharded}` to
check for quantization.
My idea is to reintegrate as much as possible into `utils/layer.py` by
expanding `load_multi` to be a bit more generic.
This might require some thinking, but ultimately the
`qweight,qzeros,scales,g_idx` should be in a single place, and
independant of bias presence.
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
---------
Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal>
Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
except RuntimeError :
2023-06-30 11:09:59 -06:00
raise RuntimeError (
" Cannot load `gptq` weight, make sure the model is already quantized, or quantize it with `text-generation-server quantize ORIGINAL_MODEL_ID NEW_MODEL_ID` "
)
qzeros = torch . cat (
[ self . get_sharded ( f " { p } .qzeros " , dim = 1 ) for p in prefixes ] , dim = 1
)
scales = torch . cat (
[ self . get_sharded ( f " { p } .scales " , dim = 1 ) for p in prefixes ] , dim = 1
)
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438)
Let's start discussing implementation.
- Need to expose the quantization scripts (either included here or add
doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa)
- Make sure GPTQ works for multiple models (priority to Falcon).
Currently it means that every place we use `get_{tensor|sharded}` to
check for quantization.
My idea is to reintegrate as much as possible into `utils/layer.py` by
expanding `load_multi` to be a bit more generic.
This might require some thinking, but ultimately the
`qweight,qzeros,scales,g_idx` should be in a single place, and
independant of bias presence.
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
---------
Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal>
Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
w = [ self . get_tensor ( f " { p } .g_idx " ) for p in prefixes ]
for w2 in w [ 1 : ] :
torch . testing . assert_close ( w2 , w [ 0 ] )
g_idx = w [ 0 ]
2023-07-12 02:00:02 -06:00
try :
bits = self . get_tensor ( " gptq_bits " ) . item ( )
groupsize = self . get_tensor ( " gptq_groupsize " ) . item ( )
2023-07-12 11:57:46 -06:00
except ( SafetensorError , RuntimeError ) as e :
2023-07-12 02:00:02 -06:00
try :
import os
2023-07-12 06:17:35 -06:00
bits = int ( os . getenv ( " GPTQ_BITS " ) )
groupsize = int ( os . getenv ( " GPTQ_GROUPSIZE " ) )
2023-07-12 02:00:02 -06:00
except Exception :
raise e
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438)
Let's start discussing implementation.
- Need to expose the quantization scripts (either included here or add
doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa)
- Make sure GPTQ works for multiple models (priority to Falcon).
Currently it means that every place we use `get_{tensor|sharded}` to
check for quantization.
My idea is to reintegrate as much as possible into `utils/layer.py` by
expanding `load_multi` to be a bit more generic.
This might require some thinking, but ultimately the
`qweight,qzeros,scales,g_idx` should be in a single place, and
independant of bias presence.
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
---------
Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal>
Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
weight = ( qweight , qzeros , scales , g_idx , bits , groupsize )
else :
w = [ self . get_sharded ( f " { p } .weight " , dim = 0 ) for p in prefixes ]
weight = torch . cat ( w , dim = dim )
return weight
def get_multi_weights_row ( self , prefix : str , quantize : str ) :
if quantize == " gptq " :
try :
qweight = self . get_sharded ( f " { prefix } .qweight " , dim = 0 )
except RuntimeError :
2023-06-30 11:09:59 -06:00
raise RuntimeError (
" Cannot load `gptq` weight, make sure the model is already quantized, or quantize it with `text-generation-server quantize ORIGINAL_MODEL_ID NEW_MODEL_ID` "
)
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438)
Let's start discussing implementation.
- Need to expose the quantization scripts (either included here or add
doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa)
- Make sure GPTQ works for multiple models (priority to Falcon).
Currently it means that every place we use `get_{tensor|sharded}` to
check for quantization.
My idea is to reintegrate as much as possible into `utils/layer.py` by
expanding `load_multi` to be a bit more generic.
This might require some thinking, but ultimately the
`qweight,qzeros,scales,g_idx` should be in a single place, and
independant of bias presence.
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
---------
Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal>
Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
qzeros = self . get_tensor ( f " { prefix } .qzeros " )
scales = self . get_tensor ( f " { prefix } .scales " )
g_idx = self . get_sharded ( f " { prefix } .g_idx " , dim = 0 )
2023-07-12 06:17:35 -06:00
try :
bits = self . get_tensor ( " gptq_bits " ) . item ( )
groupsize = self . get_tensor ( " gptq_groupsize " ) . item ( )
2023-07-12 11:57:46 -06:00
except ( SafetensorError , RuntimeError ) as e :
2023-07-12 06:17:35 -06:00
try :
import os
bits = int ( os . getenv ( " GPTQ_BITS " ) )
groupsize = int ( os . getenv ( " GPTQ_GROUPSIZE " ) )
except Exception :
raise e
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438)
Let's start discussing implementation.
- Need to expose the quantization scripts (either included here or add
doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa)
- Make sure GPTQ works for multiple models (priority to Falcon).
Currently it means that every place we use `get_{tensor|sharded}` to
check for quantization.
My idea is to reintegrate as much as possible into `utils/layer.py` by
expanding `load_multi` to be a bit more generic.
This might require some thinking, but ultimately the
`qweight,qzeros,scales,g_idx` should be in a single place, and
independant of bias presence.
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
---------
Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal>
Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
weight = ( qweight , qzeros , scales , g_idx , bits , groupsize )
else :
weight = self . get_sharded ( f " { prefix } .weight " , dim = 1 )
return weight