2023-04-26 12:23:54 -06:00
|
|
|
|
mod health;
|
2023-02-02 06:59:27 -07:00
|
|
|
|
/// Text Generation Inference Webserver
|
2023-02-02 07:02:04 -07:00
|
|
|
|
mod infer;
|
2023-02-02 06:59:27 -07:00
|
|
|
|
mod queue;
|
2022-10-17 10:27:33 -06:00
|
|
|
|
pub mod server;
|
2022-10-18 07:19:03 -06:00
|
|
|
|
mod validation;
|
2022-10-17 06:59:00 -06:00
|
|
|
|
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
use infer::{Infer, InferError, InferStreamResponse};
|
2023-02-02 06:59:27 -07:00
|
|
|
|
use queue::{Entry, Queue};
|
2022-10-18 07:19:03 -06:00
|
|
|
|
use serde::{Deserialize, Serialize};
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
use tokio::sync::OwnedSemaphorePermit;
|
|
|
|
|
use tokio_stream::wrappers::UnboundedReceiverStream;
|
2023-02-03 04:43:37 -07:00
|
|
|
|
use utoipa::ToSchema;
|
2022-10-17 06:59:00 -06:00
|
|
|
|
use validation::Validation;
|
2022-10-18 07:19:03 -06:00
|
|
|
|
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
/// Type alias for generation responses
|
|
|
|
|
pub(crate) type GenerateStreamResponse = (
|
|
|
|
|
OwnedSemaphorePermit,
|
|
|
|
|
u32, // input_length
|
|
|
|
|
UnboundedReceiverStream<Result<InferStreamResponse, InferError>>,
|
|
|
|
|
);
|
|
|
|
|
|
2023-04-18 08:16:06 -06:00
|
|
|
|
/// Hub type
|
|
|
|
|
#[derive(Clone, Debug, Deserialize)]
|
2023-04-21 07:36:29 -06:00
|
|
|
|
pub struct HubModelInfo {
|
2023-04-18 08:16:06 -06:00
|
|
|
|
#[serde(rename(deserialize = "id"))]
|
|
|
|
|
pub model_id: String,
|
|
|
|
|
pub sha: Option<String>,
|
|
|
|
|
pub pipeline_tag: Option<String>,
|
|
|
|
|
}
|
|
|
|
|
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
#[derive(Clone, Deserialize, Default)]
|
|
|
|
|
pub struct HubTokenizerConfig {
|
|
|
|
|
pub chat_template: Option<String>,
|
2024-02-13 08:01:02 -07:00
|
|
|
|
#[serde(deserialize_with = "token_serde::deserialize")]
|
2024-01-18 04:31:56 -07:00
|
|
|
|
pub bos_token: Option<String>,
|
2024-02-13 08:01:02 -07:00
|
|
|
|
#[serde(deserialize_with = "token_serde::deserialize")]
|
2024-01-18 04:31:56 -07:00
|
|
|
|
pub eos_token: Option<String>,
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl HubTokenizerConfig {
|
2024-02-01 07:39:32 -07:00
|
|
|
|
pub fn from_file(filename: &std::path::Path) -> Self {
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
let content = std::fs::read_to_string(filename).unwrap();
|
|
|
|
|
serde_json::from_str(&content).unwrap_or_default()
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2024-02-15 02:28:10 -07:00
|
|
|
|
mod json_object_or_string_to_string {
|
|
|
|
|
use serde::{Deserialize, Deserializer};
|
|
|
|
|
use serde_json::Value;
|
|
|
|
|
|
|
|
|
|
// A custom deserializer that treats both strings and objects as strings.
|
|
|
|
|
// This provides flexibility with input formats for the 'grammar' field.
|
|
|
|
|
pub fn deserialize<'de, D>(deserializer: D) -> Result<String, D::Error>
|
|
|
|
|
where
|
|
|
|
|
D: Deserializer<'de>,
|
|
|
|
|
{
|
|
|
|
|
let value = Value::deserialize(deserializer)?;
|
|
|
|
|
|
|
|
|
|
match value {
|
|
|
|
|
Value::String(s) => Ok(s),
|
|
|
|
|
// Safely handle serialization and return an error if it fails
|
|
|
|
|
Value::Object(o) => {
|
|
|
|
|
serde_json::to_string(&o).map_err(|e| serde::de::Error::custom(e.to_string()))
|
|
|
|
|
}
|
|
|
|
|
_ => Err(serde::de::Error::custom(
|
|
|
|
|
"expected string or object for grammar",
|
|
|
|
|
)),
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[derive(Clone, Debug, Deserialize)]
|
|
|
|
|
#[serde(tag = "type", content = "value")]
|
|
|
|
|
pub(crate) enum GrammarType {
|
|
|
|
|
#[serde(
|
|
|
|
|
rename = "json",
|
|
|
|
|
deserialize_with = "json_object_or_string_to_string::deserialize"
|
|
|
|
|
)]
|
|
|
|
|
Json(String),
|
|
|
|
|
#[serde(rename = "regex")]
|
|
|
|
|
Regex(String),
|
|
|
|
|
}
|
|
|
|
|
|
2024-02-13 08:01:02 -07:00
|
|
|
|
mod token_serde {
|
|
|
|
|
use super::*;
|
|
|
|
|
use serde::de;
|
|
|
|
|
use serde::Deserializer;
|
|
|
|
|
use serde_json::Value;
|
|
|
|
|
|
|
|
|
|
pub fn deserialize<'de, D>(deserializer: D) -> Result<Option<String>, D::Error>
|
|
|
|
|
where
|
|
|
|
|
D: Deserializer<'de>,
|
|
|
|
|
{
|
|
|
|
|
let value = Value::deserialize(deserializer)?;
|
|
|
|
|
|
|
|
|
|
match value {
|
|
|
|
|
Value::String(s) => Ok(Some(s)),
|
|
|
|
|
Value::Object(map) => {
|
|
|
|
|
if let Some(content) = map.get("content").and_then(|v| v.as_str()) {
|
|
|
|
|
Ok(Some(content.to_string()))
|
|
|
|
|
} else {
|
|
|
|
|
Err(de::Error::custom(
|
|
|
|
|
"content key not found in structured token",
|
|
|
|
|
))
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
_ => Err(de::Error::custom("invalid token format")),
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2023-04-18 08:16:06 -06:00
|
|
|
|
#[derive(Clone, Debug, Serialize, ToSchema)]
|
|
|
|
|
pub struct Info {
|
2023-04-25 05:11:18 -06:00
|
|
|
|
/// Model info
|
2023-04-18 08:16:06 -06:00
|
|
|
|
#[schema(example = "bigscience/blomm-560m")]
|
|
|
|
|
pub model_id: String,
|
|
|
|
|
#[schema(nullable = true, example = "e985a63cdc139290c5f700ff1929f0b5942cced2")]
|
|
|
|
|
pub model_sha: Option<String>,
|
2023-04-21 07:36:29 -06:00
|
|
|
|
#[schema(example = "torch.float16")]
|
|
|
|
|
pub model_dtype: String,
|
|
|
|
|
#[schema(example = "cuda")]
|
|
|
|
|
pub model_device_type: String,
|
2023-04-18 08:16:06 -06:00
|
|
|
|
#[schema(nullable = true, example = "text-generation")]
|
|
|
|
|
pub model_pipeline_tag: Option<String>,
|
2023-04-25 05:11:18 -06:00
|
|
|
|
/// Router Parameters
|
|
|
|
|
#[schema(example = "128")]
|
|
|
|
|
pub max_concurrent_requests: usize,
|
|
|
|
|
#[schema(example = "2")]
|
|
|
|
|
pub max_best_of: usize,
|
|
|
|
|
#[schema(example = "4")]
|
|
|
|
|
pub max_stop_sequences: usize,
|
|
|
|
|
#[schema(example = "1024")]
|
|
|
|
|
pub max_input_length: usize,
|
|
|
|
|
#[schema(example = "2048")]
|
|
|
|
|
pub max_total_tokens: usize,
|
|
|
|
|
#[schema(example = "1.2")]
|
|
|
|
|
pub waiting_served_ratio: f32,
|
|
|
|
|
#[schema(example = "32000")]
|
|
|
|
|
pub max_batch_total_tokens: u32,
|
|
|
|
|
#[schema(example = "20")]
|
|
|
|
|
pub max_waiting_tokens: usize,
|
2024-02-09 04:38:41 -07:00
|
|
|
|
#[schema(nullable = true, example = "null")]
|
|
|
|
|
pub max_batch_size: Option<usize>,
|
2023-04-25 05:11:18 -06:00
|
|
|
|
#[schema(example = "2")]
|
|
|
|
|
pub validation_workers: usize,
|
|
|
|
|
/// Router Info
|
2023-04-18 08:16:06 -06:00
|
|
|
|
#[schema(example = "0.5.0")]
|
|
|
|
|
pub version: &'static str,
|
|
|
|
|
#[schema(nullable = true, example = "null")]
|
|
|
|
|
pub sha: Option<&'static str>,
|
2023-05-02 07:43:19 -06:00
|
|
|
|
#[schema(nullable = true, example = "null")]
|
|
|
|
|
pub docker_label: Option<&'static str>,
|
2023-04-18 08:16:06 -06:00
|
|
|
|
}
|
|
|
|
|
|
2023-02-03 04:43:37 -07:00
|
|
|
|
#[derive(Clone, Debug, Deserialize, ToSchema)]
|
2022-10-18 07:19:03 -06:00
|
|
|
|
pub(crate) struct GenerateParameters {
|
2023-03-09 07:30:54 -07:00
|
|
|
|
#[serde(default)]
|
|
|
|
|
#[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 1)]
|
|
|
|
|
pub best_of: Option<usize>,
|
2023-02-03 04:43:37 -07:00
|
|
|
|
#[serde(default)]
|
|
|
|
|
#[schema(
|
|
|
|
|
exclusive_minimum = 0.0,
|
|
|
|
|
nullable = true,
|
|
|
|
|
default = "null",
|
|
|
|
|
example = 0.5
|
|
|
|
|
)]
|
|
|
|
|
pub temperature: Option<f32>,
|
|
|
|
|
#[serde(default)]
|
|
|
|
|
#[schema(
|
|
|
|
|
exclusive_minimum = 0.0,
|
|
|
|
|
nullable = true,
|
|
|
|
|
default = "null",
|
|
|
|
|
example = 1.03
|
|
|
|
|
)]
|
|
|
|
|
pub repetition_penalty: Option<f32>,
|
|
|
|
|
#[serde(default)]
|
2024-02-08 10:41:25 -07:00
|
|
|
|
#[schema(
|
|
|
|
|
exclusive_minimum = -2.0,
|
|
|
|
|
nullable = true,
|
|
|
|
|
default = "null",
|
|
|
|
|
example = 0.1
|
|
|
|
|
)]
|
|
|
|
|
pub frequency_penalty: Option<f32>,
|
|
|
|
|
#[serde(default)]
|
2023-02-03 04:43:37 -07:00
|
|
|
|
#[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 10)]
|
|
|
|
|
pub top_k: Option<i32>,
|
|
|
|
|
#[serde(default)]
|
|
|
|
|
#[schema(
|
|
|
|
|
exclusive_minimum = 0.0,
|
|
|
|
|
maximum = 1.0,
|
|
|
|
|
nullable = true,
|
|
|
|
|
default = "null",
|
|
|
|
|
example = 0.95
|
|
|
|
|
)]
|
|
|
|
|
pub top_p: Option<f32>,
|
2023-02-28 02:19:32 -07:00
|
|
|
|
#[serde(default)]
|
2023-03-09 03:33:57 -07:00
|
|
|
|
#[schema(
|
|
|
|
|
exclusive_minimum = 0.0,
|
|
|
|
|
maximum = 1.0,
|
|
|
|
|
nullable = true,
|
|
|
|
|
default = "null",
|
|
|
|
|
example = 0.95
|
|
|
|
|
)]
|
|
|
|
|
pub typical_p: Option<f32>,
|
|
|
|
|
#[serde(default)]
|
2023-02-03 04:43:37 -07:00
|
|
|
|
#[schema(default = "false", example = true)]
|
2022-10-18 07:19:03 -06:00
|
|
|
|
pub do_sample: bool,
|
|
|
|
|
#[serde(default = "default_max_new_tokens")]
|
2023-12-13 01:19:19 -07:00
|
|
|
|
#[schema(nullable = true, default = "100", example = "20")]
|
2023-10-04 09:38:42 -06:00
|
|
|
|
pub max_new_tokens: Option<u32>,
|
2022-12-15 09:03:56 -07:00
|
|
|
|
#[serde(default)]
|
2023-03-09 07:30:54 -07:00
|
|
|
|
#[schema(nullable = true, default = "null", example = false)]
|
2023-02-28 02:19:32 -07:00
|
|
|
|
pub return_full_text: Option<bool>,
|
|
|
|
|
#[serde(default)]
|
2023-02-27 06:56:58 -07:00
|
|
|
|
#[schema(inline, max_items = 4, example = json ! (["photographer"]))]
|
2022-12-12 10:25:22 -07:00
|
|
|
|
pub stop: Vec<String>,
|
2022-12-15 09:03:56 -07:00
|
|
|
|
#[serde(default)]
|
2023-03-09 07:30:54 -07:00
|
|
|
|
#[schema(nullable = true, default = "null", example = "null")]
|
2023-03-09 05:10:30 -07:00
|
|
|
|
pub truncate: Option<usize>,
|
|
|
|
|
#[serde(default)]
|
2023-03-02 04:30:41 -07:00
|
|
|
|
#[schema(default = "false", example = true)]
|
|
|
|
|
pub watermark: bool,
|
|
|
|
|
#[serde(default)]
|
2023-02-03 04:43:37 -07:00
|
|
|
|
#[schema(default = "true")]
|
2022-12-15 09:03:56 -07:00
|
|
|
|
pub details: bool,
|
2023-01-30 07:36:16 -07:00
|
|
|
|
#[serde(default)]
|
2023-06-02 09:12:30 -06:00
|
|
|
|
#[schema(default = "true")]
|
|
|
|
|
pub decoder_input_details: bool,
|
|
|
|
|
#[serde(default)]
|
2023-03-09 07:30:54 -07:00
|
|
|
|
#[schema(
|
|
|
|
|
exclusive_minimum = 0,
|
|
|
|
|
nullable = true,
|
|
|
|
|
default = "null",
|
|
|
|
|
example = "null"
|
|
|
|
|
)]
|
2023-01-30 07:36:16 -07:00
|
|
|
|
pub seed: Option<u64>,
|
2023-08-28 03:43:47 -06:00
|
|
|
|
#[serde(default)]
|
|
|
|
|
#[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 5)]
|
|
|
|
|
pub top_n_tokens: Option<u32>,
|
2024-02-15 02:28:10 -07:00
|
|
|
|
#[serde(default)]
|
|
|
|
|
pub grammar: Option<GrammarType>,
|
2022-10-18 07:19:03 -06:00
|
|
|
|
}
|
|
|
|
|
|
2023-10-04 09:38:42 -06:00
|
|
|
|
fn default_max_new_tokens() -> Option<u32> {
|
2023-12-13 01:19:19 -07:00
|
|
|
|
Some(100)
|
2022-10-18 07:19:03 -06:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn default_parameters() -> GenerateParameters {
|
|
|
|
|
GenerateParameters {
|
2023-03-09 07:30:54 -07:00
|
|
|
|
best_of: None,
|
2023-02-03 04:43:37 -07:00
|
|
|
|
temperature: None,
|
|
|
|
|
repetition_penalty: None,
|
2024-02-08 10:41:25 -07:00
|
|
|
|
frequency_penalty: None,
|
2023-02-03 04:43:37 -07:00
|
|
|
|
top_k: None,
|
|
|
|
|
top_p: None,
|
2023-03-09 03:33:57 -07:00
|
|
|
|
typical_p: None,
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
do_sample: true,
|
2022-10-18 07:19:03 -06:00
|
|
|
|
max_new_tokens: default_max_new_tokens(),
|
2023-02-28 02:19:32 -07:00
|
|
|
|
return_full_text: None,
|
2023-03-02 04:30:41 -07:00
|
|
|
|
stop: Vec::new(),
|
2023-03-09 05:10:30 -07:00
|
|
|
|
truncate: None,
|
2023-03-02 04:30:41 -07:00
|
|
|
|
watermark: false,
|
2022-12-15 09:03:56 -07:00
|
|
|
|
details: false,
|
2023-06-02 09:12:30 -06:00
|
|
|
|
decoder_input_details: false,
|
2023-01-30 07:36:16 -07:00
|
|
|
|
seed: None,
|
2023-08-28 03:43:47 -06:00
|
|
|
|
top_n_tokens: None,
|
2024-02-15 02:28:10 -07:00
|
|
|
|
grammar: None,
|
2022-10-18 07:19:03 -06:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2024-01-26 08:07:31 -07:00
|
|
|
|
#[derive(Clone, Deserialize, Serialize, ToSchema)]
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
pub(crate) struct ChatCompletion {
|
|
|
|
|
pub id: String,
|
|
|
|
|
pub object: String,
|
2024-01-26 08:07:31 -07:00
|
|
|
|
#[schema(example = "1706270835")]
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
pub created: u64,
|
2024-01-26 08:07:31 -07:00
|
|
|
|
#[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
pub model: String,
|
|
|
|
|
pub system_fingerprint: String,
|
|
|
|
|
pub choices: Vec<ChatCompletionComplete>,
|
|
|
|
|
pub usage: Usage,
|
|
|
|
|
}
|
|
|
|
|
|
2024-01-26 08:07:31 -07:00
|
|
|
|
#[derive(Clone, Deserialize, Serialize, ToSchema)]
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
pub(crate) struct ChatCompletionComplete {
|
|
|
|
|
pub index: u32,
|
|
|
|
|
pub message: Message,
|
2024-02-08 10:41:25 -07:00
|
|
|
|
pub logprobs: Option<ChatCompletionLogprobs>,
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
pub finish_reason: String,
|
|
|
|
|
}
|
|
|
|
|
|
2024-02-08 10:41:25 -07:00
|
|
|
|
#[derive(Clone, Deserialize, Serialize, ToSchema)]
|
|
|
|
|
pub(crate) struct ChatCompletionLogprobs {
|
|
|
|
|
content: Vec<ChatCompletionLogprob>,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl From<(Token, Vec<Token>)> for ChatCompletionLogprobs {
|
|
|
|
|
fn from(value: (Token, Vec<Token>)) -> Self {
|
|
|
|
|
let (token, top_tokens) = value;
|
|
|
|
|
|
|
|
|
|
Self {
|
|
|
|
|
content: vec![ChatCompletionLogprob {
|
|
|
|
|
token: token.text,
|
|
|
|
|
logprob: token.logprob,
|
|
|
|
|
top_logprobs: top_tokens
|
|
|
|
|
.into_iter()
|
|
|
|
|
.map(|t| ChatCompletionTopLogprob {
|
|
|
|
|
token: t.text,
|
|
|
|
|
logprob: t.logprob,
|
|
|
|
|
})
|
|
|
|
|
.collect(),
|
|
|
|
|
}],
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl From<(Vec<Token>, Vec<Vec<Token>>)> for ChatCompletionLogprobs {
|
|
|
|
|
fn from(value: (Vec<Token>, Vec<Vec<Token>>)) -> Self {
|
|
|
|
|
let (tokens, top_tokens) = value;
|
|
|
|
|
Self {
|
|
|
|
|
content: tokens
|
|
|
|
|
.into_iter()
|
|
|
|
|
.zip(top_tokens)
|
|
|
|
|
.map(|(t, top_t)| ChatCompletionLogprob {
|
|
|
|
|
token: t.text,
|
|
|
|
|
logprob: t.logprob,
|
|
|
|
|
top_logprobs: top_t
|
|
|
|
|
.into_iter()
|
|
|
|
|
.map(|t| ChatCompletionTopLogprob {
|
|
|
|
|
token: t.text,
|
|
|
|
|
logprob: t.logprob,
|
|
|
|
|
})
|
|
|
|
|
.collect(),
|
|
|
|
|
})
|
|
|
|
|
.collect(),
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[derive(Clone, Deserialize, Serialize, ToSchema)]
|
|
|
|
|
pub(crate) struct ChatCompletionLogprob {
|
|
|
|
|
token: String,
|
|
|
|
|
logprob: f32,
|
|
|
|
|
top_logprobs: Vec<ChatCompletionTopLogprob>,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[derive(Clone, Deserialize, Serialize, ToSchema)]
|
|
|
|
|
pub(crate) struct ChatCompletionTopLogprob {
|
|
|
|
|
token: String,
|
|
|
|
|
logprob: f32,
|
|
|
|
|
}
|
|
|
|
|
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
#[derive(Clone, Deserialize, Serialize)]
|
|
|
|
|
pub(crate) struct Usage {
|
|
|
|
|
pub prompt_tokens: u32,
|
|
|
|
|
pub completion_tokens: u32,
|
|
|
|
|
pub total_tokens: u32,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl ChatCompletion {
|
|
|
|
|
pub(crate) fn new(
|
|
|
|
|
model: String,
|
|
|
|
|
system_fingerprint: String,
|
|
|
|
|
output: String,
|
|
|
|
|
created: u64,
|
|
|
|
|
details: Details,
|
|
|
|
|
return_logprobs: bool,
|
|
|
|
|
) -> Self {
|
|
|
|
|
Self {
|
|
|
|
|
id: String::new(),
|
|
|
|
|
object: "text_completion".into(),
|
|
|
|
|
created,
|
|
|
|
|
model,
|
|
|
|
|
system_fingerprint,
|
|
|
|
|
choices: vec![ChatCompletionComplete {
|
|
|
|
|
index: 0,
|
|
|
|
|
message: Message {
|
|
|
|
|
role: "assistant".into(),
|
|
|
|
|
content: output,
|
|
|
|
|
},
|
|
|
|
|
logprobs: return_logprobs
|
2024-02-08 10:41:25 -07:00
|
|
|
|
.then(|| ChatCompletionLogprobs::from((details.tokens, details.top_tokens))),
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
finish_reason: details.finish_reason.to_string(),
|
|
|
|
|
}],
|
|
|
|
|
usage: Usage {
|
|
|
|
|
prompt_tokens: details.prefill.len() as u32,
|
|
|
|
|
completion_tokens: details.generated_tokens,
|
|
|
|
|
total_tokens: details.prefill.len() as u32 + details.generated_tokens,
|
|
|
|
|
},
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2024-01-26 08:07:31 -07:00
|
|
|
|
#[derive(Clone, Deserialize, Serialize, ToSchema)]
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
pub(crate) struct ChatCompletionChunk {
|
|
|
|
|
pub id: String,
|
|
|
|
|
pub object: String,
|
2024-01-26 08:07:31 -07:00
|
|
|
|
#[schema(example = "1706270978")]
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
pub created: u64,
|
2024-01-26 08:07:31 -07:00
|
|
|
|
#[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
pub model: String,
|
|
|
|
|
pub system_fingerprint: String,
|
|
|
|
|
pub choices: Vec<ChatCompletionChoice>,
|
|
|
|
|
}
|
|
|
|
|
|
2024-01-26 08:07:31 -07:00
|
|
|
|
#[derive(Clone, Deserialize, Serialize, ToSchema)]
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
pub(crate) struct ChatCompletionChoice {
|
|
|
|
|
pub index: u32,
|
|
|
|
|
pub delta: ChatCompletionDelta,
|
2024-02-08 10:41:25 -07:00
|
|
|
|
pub logprobs: Option<ChatCompletionLogprobs>,
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
pub finish_reason: Option<String>,
|
|
|
|
|
}
|
|
|
|
|
|
2024-01-26 08:07:31 -07:00
|
|
|
|
#[derive(Clone, Debug, Deserialize, Serialize, ToSchema)]
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
pub(crate) struct ChatCompletionDelta {
|
2024-01-26 08:07:31 -07:00
|
|
|
|
#[schema(example = "user")]
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
pub role: String,
|
2024-01-26 08:07:31 -07:00
|
|
|
|
#[schema(example = "What is Deep Learning?")]
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
pub content: String,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl ChatCompletionChunk {
|
|
|
|
|
pub(crate) fn new(
|
|
|
|
|
model: String,
|
|
|
|
|
system_fingerprint: String,
|
|
|
|
|
delta: String,
|
|
|
|
|
created: u64,
|
|
|
|
|
index: u32,
|
2024-02-08 10:41:25 -07:00
|
|
|
|
logprobs: Option<ChatCompletionLogprobs>,
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
finish_reason: Option<String>,
|
|
|
|
|
) -> Self {
|
|
|
|
|
Self {
|
|
|
|
|
id: String::new(),
|
|
|
|
|
object: "text_completion".to_string(),
|
|
|
|
|
created,
|
|
|
|
|
model,
|
|
|
|
|
system_fingerprint,
|
|
|
|
|
choices: vec![ChatCompletionChoice {
|
|
|
|
|
index,
|
|
|
|
|
delta: ChatCompletionDelta {
|
|
|
|
|
role: "assistant".to_string(),
|
|
|
|
|
content: delta,
|
|
|
|
|
},
|
|
|
|
|
logprobs,
|
|
|
|
|
finish_reason,
|
|
|
|
|
}],
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn default_request_messages() -> Vec<Message> {
|
|
|
|
|
vec![Message {
|
|
|
|
|
role: "user".to_string(),
|
|
|
|
|
content: "My name is David and I".to_string(),
|
|
|
|
|
}]
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[derive(Clone, Deserialize, ToSchema, Serialize)]
|
|
|
|
|
pub(crate) struct ChatRequest {
|
|
|
|
|
/// UNUSED
|
2024-01-26 08:07:31 -07:00
|
|
|
|
#[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
/// ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
|
2024-02-08 10:41:25 -07:00
|
|
|
|
pub model: String,
|
|
|
|
|
/* NOTE: UNUSED */
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
/// A list of messages comprising the conversation so far.
|
|
|
|
|
#[serde(default = "default_request_messages")]
|
|
|
|
|
pub messages: Vec<Message>,
|
|
|
|
|
|
|
|
|
|
/// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
|
|
|
|
|
/// decreasing the model's likelihood to repeat the same line verbatim.
|
|
|
|
|
#[serde(default)]
|
2024-01-26 08:07:31 -07:00
|
|
|
|
#[schema(example = "1.0")]
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
pub frequency_penalty: Option<f32>,
|
|
|
|
|
|
|
|
|
|
/// UNUSED
|
|
|
|
|
/// Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens
|
|
|
|
|
/// (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically,
|
|
|
|
|
/// the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model,
|
|
|
|
|
/// but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should
|
|
|
|
|
/// result in a ban or exclusive selection of the relevant token.
|
|
|
|
|
#[serde(default)]
|
|
|
|
|
pub logit_bias: Option<Vec<f32>>,
|
|
|
|
|
|
|
|
|
|
/// Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each
|
|
|
|
|
/// output token returned in the content of message.
|
|
|
|
|
#[serde(default)]
|
2024-01-26 08:07:31 -07:00
|
|
|
|
#[schema(example = "false")]
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
pub logprobs: Option<bool>,
|
|
|
|
|
|
|
|
|
|
/// An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with
|
|
|
|
|
/// an associated log probability. logprobs must be set to true if this parameter is used.
|
|
|
|
|
#[serde(default)]
|
2024-01-26 08:07:31 -07:00
|
|
|
|
#[schema(example = "5")]
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
pub top_logprobs: Option<u32>,
|
|
|
|
|
|
|
|
|
|
/// The maximum number of tokens that can be generated in the chat completion.
|
|
|
|
|
#[serde(default)]
|
2024-01-26 08:07:31 -07:00
|
|
|
|
#[schema(example = "32")]
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
pub max_tokens: Option<u32>,
|
|
|
|
|
|
|
|
|
|
/// UNUSED
|
|
|
|
|
/// How many chat completion choices to generate for each input message. Note that you will be charged based on the
|
|
|
|
|
/// number of generated tokens across all of the choices. Keep n as 1 to minimize costs.
|
|
|
|
|
#[serde(default)]
|
2024-01-26 08:07:31 -07:00
|
|
|
|
#[schema(nullable = true, example = "2")]
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
pub n: Option<u32>,
|
|
|
|
|
|
|
|
|
|
/// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far,
|
|
|
|
|
/// increasing the model's likelihood to talk about new topics
|
|
|
|
|
#[serde(default)]
|
2024-01-26 08:07:31 -07:00
|
|
|
|
#[schema(nullable = true, example = 0.1)]
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
pub presence_penalty: Option<f32>,
|
|
|
|
|
|
|
|
|
|
#[serde(default = "bool::default")]
|
|
|
|
|
pub stream: bool,
|
|
|
|
|
|
|
|
|
|
#[schema(nullable = true, example = 42)]
|
|
|
|
|
pub seed: Option<u64>,
|
Disable `decoder_input_details` on OpenAI-compatible chat streaming, pass temp and top-k from API (#1470)
This PR makes some minor tweaks to the new OpenAI-compatible chat
endpoint #1427 in `GenerateParameters`:
- Disables `decoder_input_details` when streaming is enabled. This was
causing all streaming chat requests to fail before, since
[`decoder_input_details`==true is not enabled when streaming
tokens](https://github.com/huggingface/text-generation-inference/blob/98e5faff9daec6170cc2b0f963f2d73cf846b341/router/src/validation.rs#L406).
- Passes through `temperature` and `top_p` hyperparameters from the API
request to `GenerateParameters`
## Testing
```bash
curl localhost:8080/v1/chat/completions \
-X POST \
-d '{
"model": "",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
Should work correctly. Currently, most recent release from `main`
returns error:
```
data:{"error":"Input validation error: `decoder_input_details` == true is not supported when streaming tokens","error_type":"validation"}
```
It's my first time contributing to this project, so I could be missing
something. Would especially appreciate @drbh's eyes on this one
2024-01-23 07:55:05 -07:00
|
|
|
|
|
|
|
|
|
/// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
|
|
|
|
|
/// lower values like 0.2 will make it more focused and deterministic.
|
|
|
|
|
///
|
|
|
|
|
/// We generally recommend altering this or `top_p` but not both.
|
|
|
|
|
#[serde(default)]
|
2024-01-26 08:07:31 -07:00
|
|
|
|
#[schema(nullable = true, example = 1.0)]
|
Disable `decoder_input_details` on OpenAI-compatible chat streaming, pass temp and top-k from API (#1470)
This PR makes some minor tweaks to the new OpenAI-compatible chat
endpoint #1427 in `GenerateParameters`:
- Disables `decoder_input_details` when streaming is enabled. This was
causing all streaming chat requests to fail before, since
[`decoder_input_details`==true is not enabled when streaming
tokens](https://github.com/huggingface/text-generation-inference/blob/98e5faff9daec6170cc2b0f963f2d73cf846b341/router/src/validation.rs#L406).
- Passes through `temperature` and `top_p` hyperparameters from the API
request to `GenerateParameters`
## Testing
```bash
curl localhost:8080/v1/chat/completions \
-X POST \
-d '{
"model": "",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
Should work correctly. Currently, most recent release from `main`
returns error:
```
data:{"error":"Input validation error: `decoder_input_details` == true is not supported when streaming tokens","error_type":"validation"}
```
It's my first time contributing to this project, so I could be missing
something. Would especially appreciate @drbh's eyes on this one
2024-01-23 07:55:05 -07:00
|
|
|
|
pub temperature: Option<f32>,
|
|
|
|
|
|
|
|
|
|
/// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
|
|
|
|
|
/// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
|
|
|
|
|
#[serde(default)]
|
2024-01-26 08:07:31 -07:00
|
|
|
|
#[schema(nullable = true, example = 0.95)]
|
Disable `decoder_input_details` on OpenAI-compatible chat streaming, pass temp and top-k from API (#1470)
This PR makes some minor tweaks to the new OpenAI-compatible chat
endpoint #1427 in `GenerateParameters`:
- Disables `decoder_input_details` when streaming is enabled. This was
causing all streaming chat requests to fail before, since
[`decoder_input_details`==true is not enabled when streaming
tokens](https://github.com/huggingface/text-generation-inference/blob/98e5faff9daec6170cc2b0f963f2d73cf846b341/router/src/validation.rs#L406).
- Passes through `temperature` and `top_p` hyperparameters from the API
request to `GenerateParameters`
## Testing
```bash
curl localhost:8080/v1/chat/completions \
-X POST \
-d '{
"model": "",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
Should work correctly. Currently, most recent release from `main`
returns error:
```
data:{"error":"Input validation error: `decoder_input_details` == true is not supported when streaming tokens","error_type":"validation"}
```
It's my first time contributing to this project, so I could be missing
something. Would especially appreciate @drbh's eyes on this one
2024-01-23 07:55:05 -07:00
|
|
|
|
pub top_p: Option<f32>,
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
}
|
|
|
|
|
|
2024-01-18 04:31:56 -07:00
|
|
|
|
#[derive(Clone, Serialize, Deserialize)]
|
|
|
|
|
pub(crate) struct ChatTemplateInputs<'a> {
|
|
|
|
|
messages: Vec<Message>,
|
|
|
|
|
bos_token: Option<&'a str>,
|
|
|
|
|
eos_token: Option<&'a str>,
|
2024-02-07 01:35:53 -07:00
|
|
|
|
add_generation_prompt: bool,
|
2024-01-18 04:31:56 -07:00
|
|
|
|
}
|
|
|
|
|
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
#[derive(Clone, Deserialize, ToSchema, Serialize)]
|
|
|
|
|
pub(crate) struct Message {
|
|
|
|
|
#[schema(example = "user")]
|
|
|
|
|
pub role: String,
|
|
|
|
|
#[schema(example = "My name is David and I")]
|
|
|
|
|
pub content: String,
|
|
|
|
|
}
|
|
|
|
|
|
2023-02-03 04:43:37 -07:00
|
|
|
|
#[derive(Clone, Debug, Deserialize, ToSchema)]
|
2022-10-18 07:19:03 -06:00
|
|
|
|
pub(crate) struct GenerateRequest {
|
2023-02-03 04:43:37 -07:00
|
|
|
|
#[schema(example = "My name is Olivier and I")]
|
2022-10-18 07:19:03 -06:00
|
|
|
|
pub inputs: String,
|
|
|
|
|
#[serde(default = "default_parameters")]
|
|
|
|
|
pub parameters: GenerateParameters,
|
|
|
|
|
}
|
|
|
|
|
|
2023-02-27 06:56:58 -07:00
|
|
|
|
#[derive(Clone, Debug, Deserialize, ToSchema)]
|
|
|
|
|
pub(crate) struct CompatGenerateRequest {
|
|
|
|
|
#[schema(example = "My name is Olivier and I")]
|
|
|
|
|
pub inputs: String,
|
|
|
|
|
#[serde(default = "default_parameters")]
|
|
|
|
|
pub parameters: GenerateParameters,
|
|
|
|
|
#[serde(default)]
|
2023-06-05 10:16:08 -06:00
|
|
|
|
#[schema(default = "false")]
|
2023-02-27 06:56:58 -07:00
|
|
|
|
pub stream: bool,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl From<CompatGenerateRequest> for GenerateRequest {
|
|
|
|
|
fn from(req: CompatGenerateRequest) -> Self {
|
|
|
|
|
Self {
|
|
|
|
|
inputs: req.inputs,
|
|
|
|
|
parameters: req.parameters,
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2023-02-24 07:55:57 -07:00
|
|
|
|
#[derive(Debug, Serialize, ToSchema)]
|
|
|
|
|
pub struct PrefillToken {
|
|
|
|
|
#[schema(example = 0)]
|
|
|
|
|
id: u32,
|
|
|
|
|
#[schema(example = "test")]
|
|
|
|
|
text: String,
|
2023-02-27 06:56:58 -07:00
|
|
|
|
#[schema(nullable = true, example = - 0.34)]
|
2023-02-24 07:55:57 -07:00
|
|
|
|
logprob: f32,
|
|
|
|
|
}
|
|
|
|
|
|
2024-02-08 10:41:25 -07:00
|
|
|
|
#[derive(Debug, Serialize, ToSchema, Clone)]
|
2023-02-03 04:43:37 -07:00
|
|
|
|
pub struct Token {
|
|
|
|
|
#[schema(example = 0)]
|
|
|
|
|
id: u32,
|
|
|
|
|
#[schema(example = "test")]
|
|
|
|
|
text: String,
|
2023-02-27 06:56:58 -07:00
|
|
|
|
#[schema(nullable = true, example = - 0.34)]
|
2023-02-03 04:43:37 -07:00
|
|
|
|
logprob: f32,
|
2023-02-24 07:55:57 -07:00
|
|
|
|
#[schema(example = "false")]
|
|
|
|
|
special: bool,
|
2023-02-03 04:43:37 -07:00
|
|
|
|
}
|
|
|
|
|
|
Add a new `/tokenize` route to get the tokenized input (#1471)
# What does this PR do?
Ideally this is done client side, but this is a recurring request,
therefore we implemented it.
- Runs only if rust tokenizer is present (not encumbering the main
inference pipeline is important).
- Returns simple results, ID, text (gotten with offsets from the
original string) and offsets (so users can do things like highlighting
text).
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
2024-01-25 06:19:03 -07:00
|
|
|
|
#[derive(Debug, Serialize, ToSchema)]
|
|
|
|
|
pub struct SimpleToken {
|
|
|
|
|
#[schema(example = 0)]
|
|
|
|
|
id: u32,
|
|
|
|
|
#[schema(example = "test")]
|
|
|
|
|
text: String,
|
|
|
|
|
#[schema(example = 0)]
|
|
|
|
|
start: usize,
|
|
|
|
|
#[schema(example = 2)]
|
|
|
|
|
stop: usize,
|
|
|
|
|
}
|
|
|
|
|
|
2023-02-03 04:43:37 -07:00
|
|
|
|
#[derive(Serialize, ToSchema)]
|
|
|
|
|
#[serde(rename_all(serialize = "snake_case"))]
|
2024-01-26 08:07:31 -07:00
|
|
|
|
#[schema(example = "Length")]
|
2023-02-03 04:43:37 -07:00
|
|
|
|
pub(crate) enum FinishReason {
|
|
|
|
|
#[schema(rename = "length")]
|
|
|
|
|
Length,
|
|
|
|
|
#[serde(rename = "eos_token")]
|
|
|
|
|
#[schema(rename = "eos_token")]
|
|
|
|
|
EndOfSequenceToken,
|
|
|
|
|
#[schema(rename = "stop_sequence")]
|
|
|
|
|
StopSequence,
|
|
|
|
|
}
|
2023-01-31 09:04:00 -07:00
|
|
|
|
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
impl std::fmt::Display for FinishReason {
|
|
|
|
|
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
|
|
|
|
match self {
|
|
|
|
|
FinishReason::Length => write!(f, "length"),
|
|
|
|
|
FinishReason::EndOfSequenceToken => write!(f, "eos_token"),
|
|
|
|
|
FinishReason::StopSequence => write!(f, "stop_sequence"),
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2023-03-09 07:30:54 -07:00
|
|
|
|
#[derive(Serialize, ToSchema)]
|
|
|
|
|
pub(crate) struct BestOfSequence {
|
|
|
|
|
#[schema(example = "test")]
|
|
|
|
|
pub generated_text: String,
|
|
|
|
|
#[schema(example = "length")]
|
|
|
|
|
pub finish_reason: FinishReason,
|
|
|
|
|
#[schema(example = 1)]
|
|
|
|
|
pub generated_tokens: u32,
|
|
|
|
|
#[schema(nullable = true, example = 42)]
|
|
|
|
|
pub seed: Option<u64>,
|
|
|
|
|
pub prefill: Vec<PrefillToken>,
|
|
|
|
|
pub tokens: Vec<Token>,
|
2023-08-28 03:43:47 -06:00
|
|
|
|
#[serde(skip_serializing_if = "Vec::is_empty")]
|
|
|
|
|
pub top_tokens: Vec<Vec<Token>>,
|
2023-03-09 07:30:54 -07:00
|
|
|
|
}
|
|
|
|
|
|
2023-02-03 04:43:37 -07:00
|
|
|
|
#[derive(Serialize, ToSchema)]
|
2022-12-15 09:03:56 -07:00
|
|
|
|
pub(crate) struct Details {
|
2023-02-03 04:43:37 -07:00
|
|
|
|
#[schema(example = "length")]
|
|
|
|
|
pub finish_reason: FinishReason,
|
|
|
|
|
#[schema(example = 1)]
|
2022-12-15 09:03:56 -07:00
|
|
|
|
pub generated_tokens: u32,
|
2023-03-09 07:30:54 -07:00
|
|
|
|
#[schema(nullable = true, example = 42)]
|
2023-01-30 07:36:16 -07:00
|
|
|
|
pub seed: Option<u64>,
|
2023-03-07 10:52:22 -07:00
|
|
|
|
pub prefill: Vec<PrefillToken>,
|
|
|
|
|
pub tokens: Vec<Token>,
|
2023-03-09 07:30:54 -07:00
|
|
|
|
#[serde(skip_serializing_if = "Option::is_none")]
|
|
|
|
|
pub best_of_sequences: Option<Vec<BestOfSequence>>,
|
2023-08-28 03:43:47 -06:00
|
|
|
|
#[serde(skip_serializing_if = "Vec::is_empty")]
|
|
|
|
|
pub top_tokens: Vec<Vec<Token>>,
|
2022-12-15 09:03:56 -07:00
|
|
|
|
}
|
|
|
|
|
|
2023-02-03 04:43:37 -07:00
|
|
|
|
#[derive(Serialize, ToSchema)]
|
2023-01-31 09:04:00 -07:00
|
|
|
|
pub(crate) struct GenerateResponse {
|
2023-02-03 04:43:37 -07:00
|
|
|
|
#[schema(example = "test")]
|
2022-10-18 07:19:03 -06:00
|
|
|
|
pub generated_text: String,
|
2022-12-15 09:03:56 -07:00
|
|
|
|
#[serde(skip_serializing_if = "Option::is_none")]
|
|
|
|
|
pub details: Option<Details>,
|
2022-10-18 07:19:03 -06:00
|
|
|
|
}
|
2022-10-27 06:25:29 -06:00
|
|
|
|
|
2024-01-26 08:07:31 -07:00
|
|
|
|
#[derive(Serialize, ToSchema)]
|
|
|
|
|
#[serde(transparent)]
|
|
|
|
|
pub(crate) struct TokenizeResponse(Vec<SimpleToken>);
|
|
|
|
|
|
2023-02-03 04:43:37 -07:00
|
|
|
|
#[derive(Serialize, ToSchema)]
|
|
|
|
|
pub(crate) struct StreamDetails {
|
|
|
|
|
#[schema(example = "length")]
|
|
|
|
|
pub finish_reason: FinishReason,
|
|
|
|
|
#[schema(example = 1)]
|
|
|
|
|
pub generated_tokens: u32,
|
2023-03-09 07:30:54 -07:00
|
|
|
|
#[schema(nullable = true, example = 42)]
|
2023-02-03 04:43:37 -07:00
|
|
|
|
pub seed: Option<u64>,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[derive(Serialize, ToSchema)]
|
2023-01-31 09:04:00 -07:00
|
|
|
|
pub(crate) struct StreamResponse {
|
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
|
|
|
|
pub index: u32,
|
2023-01-31 09:04:00 -07:00
|
|
|
|
pub token: Token,
|
2023-08-28 03:43:47 -06:00
|
|
|
|
#[serde(skip_serializing_if = "Vec::is_empty")]
|
|
|
|
|
pub top_tokens: Vec<Token>,
|
2023-02-03 04:43:37 -07:00
|
|
|
|
#[schema(nullable = true, default = "null", example = "test")]
|
2023-01-31 09:04:00 -07:00
|
|
|
|
pub generated_text: Option<String>,
|
2023-02-03 04:43:37 -07:00
|
|
|
|
#[schema(nullable = true, default = "null")]
|
|
|
|
|
pub details: Option<StreamDetails>,
|
2023-01-31 09:04:00 -07:00
|
|
|
|
}
|
|
|
|
|
|
2023-02-03 04:43:37 -07:00
|
|
|
|
#[derive(Serialize, ToSchema)]
|
2022-10-27 06:25:29 -06:00
|
|
|
|
pub(crate) struct ErrorResponse {
|
|
|
|
|
pub error: String,
|
2023-03-07 10:52:22 -07:00
|
|
|
|
pub error_type: String,
|
2022-10-27 06:25:29 -06:00
|
|
|
|
}
|
2023-04-26 08:14:40 -06:00
|
|
|
|
|
|
|
|
|
#[cfg(test)]
|
2023-04-26 12:23:54 -06:00
|
|
|
|
mod tests {
|
2024-02-13 08:01:02 -07:00
|
|
|
|
use super::*;
|
|
|
|
|
|
2023-04-26 08:14:40 -06:00
|
|
|
|
use tokenizers::Tokenizer;
|
|
|
|
|
|
2023-04-26 12:23:54 -06:00
|
|
|
|
pub(crate) async fn get_tokenizer() -> Tokenizer {
|
2024-01-26 06:06:27 -07:00
|
|
|
|
let api = hf_hub::api::sync::Api::new().unwrap();
|
|
|
|
|
let repo = api.model("gpt2".to_string());
|
|
|
|
|
let filename = repo.get("tokenizer.json").unwrap();
|
|
|
|
|
Tokenizer::from_file(filename).unwrap()
|
2023-04-26 08:14:40 -06:00
|
|
|
|
}
|
2024-02-13 08:01:02 -07:00
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
fn test_hub_nested_tokens_tokenizer_config() {
|
|
|
|
|
// this is a subset of the tokenizer.json file
|
|
|
|
|
// in this case we expect the tokens to be encoded as simple strings
|
|
|
|
|
let json_content = r#"{
|
|
|
|
|
"chat_template": "test",
|
|
|
|
|
"bos_token": "<|begin▁of▁sentence|>",
|
|
|
|
|
"eos_token": "<|end▁of▁sentence|>"
|
|
|
|
|
}"#;
|
|
|
|
|
|
|
|
|
|
let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();
|
|
|
|
|
|
|
|
|
|
// check that we successfully parsed the tokens
|
|
|
|
|
assert_eq!(config.chat_template, Some("test".to_string()));
|
|
|
|
|
assert_eq!(
|
|
|
|
|
config.bos_token,
|
|
|
|
|
Some("<|begin▁of▁sentence|>".to_string())
|
|
|
|
|
);
|
|
|
|
|
assert_eq!(config.eos_token, Some("<|end▁of▁sentence|>".to_string()));
|
|
|
|
|
|
|
|
|
|
// in this case we expect the tokens to be encoded as structured tokens
|
|
|
|
|
// we want the content of the structured token
|
|
|
|
|
let json_content = r#"{
|
|
|
|
|
"chat_template": "test",
|
|
|
|
|
"bos_token": {
|
|
|
|
|
"__type": "AddedToken",
|
|
|
|
|
"content": "<|begin▁of▁sentence|>",
|
|
|
|
|
"lstrip": false,
|
|
|
|
|
"normalized": true,
|
|
|
|
|
"rstrip": false,
|
|
|
|
|
"single_word": false
|
|
|
|
|
},
|
|
|
|
|
"eos_token": {
|
|
|
|
|
"__type": "AddedToken",
|
|
|
|
|
"content": "<|end▁of▁sentence|>",
|
|
|
|
|
"lstrip": false,
|
|
|
|
|
"normalized": true,
|
|
|
|
|
"rstrip": false,
|
|
|
|
|
"single_word": false
|
|
|
|
|
}
|
|
|
|
|
}"#;
|
|
|
|
|
|
|
|
|
|
let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();
|
|
|
|
|
|
|
|
|
|
// check that we successfully parsed the tokens
|
|
|
|
|
assert_eq!(config.chat_template, Some("test".to_string()));
|
|
|
|
|
assert_eq!(
|
|
|
|
|
config.bos_token,
|
|
|
|
|
Some("<|begin▁of▁sentence|>".to_string())
|
|
|
|
|
);
|
|
|
|
|
assert_eq!(config.eos_token, Some("<|end▁of▁sentence|>".to_string()));
|
|
|
|
|
}
|
2023-04-26 08:14:40 -06:00
|
|
|
|
}
|